Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254822

RESUMO

Treatment options for ovarian cancer patients are limited, and a high unmet clinical need remains for targeted and long-lasting, efficient drugs. Genetically modified T cells expressing chimeric antigen receptors (CAR), are promising new drugs that can be directed towards a defined target and have shown efficient, as well as persisting, anti-tumor responses in many patients. We sought to develop novel CAR T cells targeting ovarian cancer and to assess these candidates preclinically. First, we identified potential CAR targets on ovarian cancer samples. We confirmed high and consistent expressions of the tumor-associated antigen FOLR1 on primary ovarian cancer samples. Subsequently, we designed a series of CAR T cell candidates against the identified target and demonstrated their functionality against ovarian cancer cell lines in vitro and in an in vivo xenograft model. Finally, we performed additional in vitro assays recapitulating immune suppressive mechanisms present in solid tumors and developed a process for the automated manufacturing of our CAR T cell candidate. These findings demonstrate the feasibility of anti-FOLR1 CAR T cells for ovarian cancer and potentially other FOLR1-expressing tumors.

2.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298141

RESUMO

Due to the paucity of targetable antigens, triple-negative breast cancer (TNBC) remains a challenging subtype of breast cancer to treat. In this study, we developed and evaluated a chimeric antigen receptor (CAR) T cell-based treatment modality for TNBC by targeting stage-specific embryonic antigen 4 (SSEA-4), a glycolipid whose overexpression in TNBC has been correlated with metastasis and chemoresistance. To delineate the optimal CAR configuration, a panel of SSEA-4-specific CARs containing alternative extracellular spacer domains was constructed. The different CAR constructs mediated antigen-specific T cell activation characterized by degranulation of T cells, secretion of inflammatory cytokines, and killing of SSEA-4-expressing target cells, but the extent of this activation differed depending on the length of the spacer region. Adoptive transfer of the CAR-engineered T cells into mice with subcutaneous TNBC xenografts mediated a limited antitumor effect but induced severe toxicity symptoms in the cohort receiving the most bioactive CAR variant. We found that progenitor cells in the lung and bone marrow express SSEA-4 and are likely co-targeted by the CAR T cells. Thus, this study has revealed serious adverse effects that raise safety concerns for SSEA-4-directed CAR therapies because of the risk of eliminating vital cells with stem cell properties.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores de Antígenos de Linfócitos T , Linhagem Celular Tumoral
3.
Nat Commun ; 12(1): 1453, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674603

RESUMO

A major roadblock prohibiting effective cellular immunotherapy of pancreatic ductal adenocarcinoma (PDAC) is the lack of suitable tumor-specific antigens. To address this challenge, here we combine flow cytometry screenings, bioinformatic expression analyses and a cyclic immunofluorescence platform. We identify CLA, CD66c, CD318 and TSPAN8 as target candidates among 371 antigens and generate 32 CARs specific for these molecules. CAR T cell activity is evaluated in vitro based on target cell lysis, T cell activation and cytokine release. Promising constructs are evaluated in vivo. CAR T cells specific for CD66c, CD318 and TSPAN8 demonstrate efficacies ranging from stabilized disease to complete tumor eradication with CD318 followed by TSPAN8 being the most promising candidates for clinical translation based on functionality and predicted safety profiles. This study reveals potential target candidates for CAR T cell based immunotherapy of PDAC together with a functional set of CAR constructs specific for these molecules.


Assuntos
Adenocarcinoma/metabolismo , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Imunoterapia/métodos , Neoplasias Pancreáticas/metabolismo , Tetraspaninas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/terapia , Animais , Antígenos de Neoplasias/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Fatores Imunológicos , Ativação Linfocitária , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Tetraspaninas/genética , Neoplasias Pancreáticas
4.
Front Immunol ; 11: 1704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849600

RESUMO

A domain that is often neglected in the assessment of chimeric antigen receptor (CAR) functionality is the extracellular spacer module. However, several studies have elucidated that membrane proximal epitopes are best targeted through CARs comprising long spacers, while short spacer CARs exhibit highest activity on distal epitopes. This finding can be explained by the requirement to have an optimal distance between the effector T cell and target cell. Commonly used long spacer domains are the CH2-CH3 domains of IgG molecules. However, CARs containing these spacers generally show inferior in vivo efficacy in mouse models compared to their observed in vitro activity, which is linked to unspecific Fcγ-Receptor binding and can be abolished by mutating the respective regions. Here, we first assessed a CAR therapy targeting membrane proximal CD20 using such a modified long IgG1 spacer. However, despite these mutations, this construct failed to unfold its observed in vitro cytotoxic potential in an in vivo model, while a shorter but less structured CD8α spacer CAR showed complete tumor clearance. Given the shortage of well-described long spacer domains with a favorable functionality profile, we designed a novel class of CAR spacers with similar attributes to IgG spacers but without unspecific off-target binding, derived from the Sialic acid-binding immunoglobulin-type lectins (Siglecs). Of five constructs tested, a Siglec-4 derived spacer showed highest cytotoxic potential and similar performance to a CD8α spacer in a CD20 specific CAR setting. In a pancreatic ductal adenocarcinoma model, a Siglec-4 spacer CAR targeting a membrane proximal (TSPAN8) epitope was efficiently engaged in vitro, while a membrane distal (CD66c) epitope did not activate the T cell. Transfer of the TSPAN8 specific Siglec-4 spacer CAR to an in vivo setting maintained the excellent tumor killing characteristics being indistinguishable from a TSPAN8 CD8α spacer CAR while outperforming an IgG4 long spacer CAR and, at the same time, showing an advantageous central memory CAR T cell phenotype with lower release of inflammatory cytokines. In summary, we developed a novel spacer that combines cytotoxic potential with an advantageous T cell and cytokine release phenotype, which make this an interesting candidate for future clinical applications.


Assuntos
Antígenos CD20/imunologia , Carcinoma Ductal Pancreático/terapia , Imunoterapia Adotiva , Linfoma/terapia , Glicoproteína Associada a Mielina/genética , Neoplasias Pancreáticas/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Animais , Antígenos CD20/genética , Antígenos CD20/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Linfoma/imunologia , Linfoma/metabolismo , Linfoma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Associada a Mielina/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Hum Gene Ther ; 28(10): 914-925, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28847167

RESUMO

The clinical success of gene-engineered T cells expressing a chimeric antigen receptor (CAR), as manifested in several clinical trials for the treatment of B cell malignancies, warrants the development of a simple and robust manufacturing procedure capable of reducing to a minimum the challenges associated with its complexity. Conventional protocols comprise many open handling steps, are labor intensive, and are difficult to upscale for large numbers of patients. Furthermore, extensive training of personnel is required to avoid operator variations. An automated current Good Manufacturing Practice-compliant process has therefore been developed for the generation of gene-engineered T cells. Upon installation of the closed, single-use tubing set on the CliniMACS Prodigy™, sterile welding of the starting cell product, and sterile connection of the required reagents, T cells are magnetically enriched, stimulated, transduced using lentiviral vectors, expanded, and formulated. Starting from healthy donor (HD) or lymphoma or melanoma patient material (PM), the robustness and reproducibility of the manufacturing of anti-CD20 specific CAR T cells were verified. Independent of the starting material, operator, or device, the process consistently yielded a therapeutic dose of highly viable CAR T cells. Interestingly, the formulated product obtained with PM was comparable to that of HD with respect to cell composition, phenotype, and function, even though the starting material differed significantly. Potent antitumor reactivity of the produced anti-CD20 CAR T cells was shown in vitro as well as in vivo. In summary, the automated T cell transduction process meets the requirements for clinical manufacturing that the authors intend to use in two separate clinical trials for the treatment of melanoma and B cell lymphoma.


Assuntos
Antígenos CD20/imunologia , Técnicas de Cultura de Células , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Linhagem Celular Tumoral , Separação Celular , Citocinas/metabolismo , Citotoxicidade Imunológica , Expressão Gênica , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...