Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 100(6): 1414-1428.e10, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30392795

RESUMO

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine also acts directly on AVK via an inhibitory dopamine receptor. Both AVK and DVA couple to head motoneurons by electrical and chemical synapses to orchestrate either dispersal or dwelling behavior, thus integrating environmental and proprioceptive signals. Dopaminergic regulation of food-related behavior, via similar neuropeptides, may be conserved in mammals.


Assuntos
Dopamina/farmacologia , Alimentos , Locomoção/efeitos dos fármacos , Vias Neurais/fisiologia , Neuropeptídeos/farmacologia , Sensação/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dopamina/metabolismo , Vias Neurais/efeitos dos fármacos , Neuropeptídeos/metabolismo , Optogenética , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/fisiologia , Células Receptoras Sensoriais/fisiologia
3.
Proc Natl Acad Sci U S A ; 110(32): E3007-16, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878262

RESUMO

Local recycling of synaptic vesicles (SVs) allows neurons to sustain transmitter release. Extreme activity (e.g., during seizure) may exhaust synaptic transmission and, in vitro, induces bulk endocytosis to recover SV membrane and proteins; how this occurs in animals is unknown. Following optogenetic hyperstimulation of Caenorhabditis elegans motoneurons, we analyzed synaptic recovery by time-resolved behavioral, electrophysiological, and ultrastructural assays. Recovery of docked SVs and of evoked-release amplitudes (indicating readily-releasable pool refilling) occurred within ∼8-20 s (τ = 9.2 s and τ = 11.9 s), whereas locomotion recovered only after ∼60 s (τ = 20 s). During ∼11-s stimulation, 50- to 200-nm noncoated vesicles ("100nm vesicles") formed, which disappeared ∼8 s poststimulation, likely representing endocytic intermediates from which SVs may regenerate. In endophilin, synaptojanin, and dynamin mutants, affecting endocytosis and vesicle scission, resolving 100nm vesicles was delayed (>20 s). In dynamin mutants, 100nm vesicles were abundant and persistent, sometimes continuous with the plasma membrane; incomplete budding of smaller vesicles from 100nm vesicles further implicates dynamin in regenerating SVs from bulk-endocytosed vesicles. Synaptic recovery after exhaustive activity is slow, and different time scales of recovery at ultrastructural, physiological, and behavioral levels indicate multiple contributing processes. Similar processes may jointly account for slow recovery from acute seizures also in higher animals.


Assuntos
Neurônios Motores/fisiologia , Optogenética/métodos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Dinaminas/genética , Dinaminas/metabolismo , Dinaminas/fisiologia , Endocitose/genética , Endocitose/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Neurônios Motores/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Interferência de RNA , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 108(42): 17504-9, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21969584

RESUMO

Many animals, including humans, select alternate forms of motion (gaits) to move efficiently in different environments. However, it is unclear whether primitive animals, such as nematodes, also use this strategy. We used a multifaceted approach to study how the nematode Caenorhabditis elegans freely moves into and out of water. We demonstrate that C. elegans uses biogenic amines to switch between distinct crawling and swimming gaits. Dopamine is necessary and sufficient to initiate and maintain crawling after swimming. Serotonin is necessary and sufficient to transition from crawling to swimming and to inhibit a set of crawl-specific behaviors. Further study of locomotory switching in C. elegans and its dependence on biogenic amines may provide insight into how gait transitions are performed in other animals.


Assuntos
Caenorhabditis elegans/fisiologia , Dopamina/fisiologia , Locomoção/fisiologia , Serotonina/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Fenômenos Biomecânicos , Neurônios Dopaminérgicos/fisiologia , Marcha/fisiologia , Neurônios Serotoninérgicos/fisiologia , Transdução de Sinais/fisiologia , Natação/fisiologia , Gravação em Vídeo , Viscosidade , Água
5.
J Neurophysiol ; 106(2): 817-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21613582

RESUMO

In the nervous system, a perfect balance of excitation and inhibition is required, for example, to enable coordinated locomotion. In Caenorhabditis elegans, cholinergic and GABAergic motor neurons (MNs) effect waves of contralateral muscle contraction and relaxation. Cholinergic MNs innervate muscle as well as GABAergic MNs, projecting to the opposite side of the body, at dyadic synapses. Only a few connections exist from GABAergic to cholinergic MNs, emphasizing that GABA signaling is mainly directed toward muscle. Yet, a GABA(B) receptor comprising GBB-1 and GBB-2 subunits, expressed in cholinergic MNs, was shown to affect locomotion, likely by feedback inhibition of cholinergic MNs in response to spillover GABA. In the present study, we examined whether the GBB-1/2 receptor could also affect short-term plasticity in cholinergic MNs with the use of channelrhodopsin-2-mediated photostimulation of GABAergic and cholinergic neurons. The GBB-1/2 receptor contributes to acute body relaxation, evoked by photoactivation of GABAergic MNs, and to effects of GABA on locomotion behavior. Loss of the plasma membrane GABA transporter SNF-11, as well as acute photoevoked GABA release, affected cholinergic MN function in opposite directions. Prolonged stimulation of GABA MNs had subtle effects on cholinergic MNs, depending on stimulus duration and gbb-2. Thus GBB-1/2 receptors serve mainly for linear feedback inhibition of cholinergic MNs but also evoke minor plastic changes.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Neurônios Motores/fisiologia , Estimulação Luminosa/métodos , Receptores de GABA-B/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Células Cultivadas , Dados de Sequência Molecular , Atividade Motora/fisiologia
6.
J Neurosci Methods ; 191(1): 90-3, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20538016

RESUMO

Over the past several years, optogenetic techniques have become widely used to help elucidate a variety of neuroscience problems. The unique optical control of neurons within a variety of organisms provided by optogenetics allows researchers to probe neural circuits and investigate neuronal function in a highly specific and controllable fashion. Recently, optogenetic techniques have been introduced to investigate synaptic transmission in the nematode Caenorhabditis elegans. For synaptic transmission studies, although quantitative, this technique is manual and very low-throughput. As it is, it is difficult to apply this technique to genetic studies. In this paper, we enhance this new tool by combining it with microfluidics technology and computer automation. This allows us to increase the assay throughput by several orders of magnitude as compared to the current standard approach, as well as improving standardization and consistency in data gathering. We also demonstrate the ability to infuse drugs to worms during optogenetic experiments using microfluidics. Together, these technologies will enable high-throughput genetic studies such as those of synaptic function.


Assuntos
Caenorhabditis elegans/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Microfluídica/métodos , Junção Neuromuscular/fisiologia , Transmissão Sináptica/genética , Animais , Caenorhabditis elegans/efeitos dos fármacos , Channelrhodopsins , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Inibidores/genética , Microscopia de Vídeo/métodos , Junção Neuromuscular/citologia , Junção Neuromuscular/efeitos dos fármacos , Reconhecimento Automatizado de Padrão/métodos , Estimulação Luminosa/métodos , Transmissão Sináptica/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 105(42): 16350-5, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18852466

RESUMO

The Caenorhabditis elegans defecation motor program (DMP) is a highly coordinated rhythmic behavior that requires two GABAergic neurons that synapse onto the enteric muscles. One class of DMP mutants, called anterior body wall muscle contraction and expulsion defective (aex) mutants, exhibits similar defects to those caused by the loss of these two neurons. Here, we demonstrate that aex-2 encodes a G-protein-coupled receptor (GPCR) and aex-4 encodes an exocytic SNAP25 homologue. We found that aex-2 functions in the nervous system and activates a G(s)alpha signaling pathway to regulate defecation. aex-4, on the other hand, functions in the intestinal epithelial cells. Furthermore, we show that aex-5, which encodes a pro-protein convertase, functions in the intestine to regulate the DMP and that its secretion from the intestine is impaired in aex-4 mutants. Activation of the G(s)alpha GPCR pathway in GABAergic neurons can suppress the defecation defect of the intestinal mutants aex-4 and aex-5. Lastly, we demonstrate that activation of GABAergic neurons using the light-gated cation channel channelrhodopsin-2 is sufficient to suppress the behavioral defects of aex-2, aex-4, and aex-5. These results genetically place intestinal genes aex-4 and aex-5 upstream of GABAergic GPCR signaling. We propose a model whereby the intestinal genes aex-4 and aex-5 control the DMP by regulating the secretion of a signal, which activates the neuronal receptor aex-2.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Mucosa Intestinal/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Animais , Regulação da Expressão Gênica , Luz , Locomoção , Dados de Sequência Molecular , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/metabolismo , Ácido gama-Aminobutírico/biossíntese
8.
Nat Methods ; 5(10): 895-902, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18794862

RESUMO

We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of synaptic function via behavioral and electrophysiological analyses. We photo-triggered release of acetylcholine or gamma-aminobutyric acid at Caenorhabditis elegans neuromuscular junctions using targeted expression of Chlamydomonas reinhardtii Channelrhodopsin-2. In intact Channelrhodopsin-2 transgenic worms, photostimulation instantly induced body elongation (for gamma-aminobutyric acid) or contraction (for acetylcholine), which we analyzed acutely, or during sustained activation with automated image analysis, to assess synaptic efficacy. In dissected worms, photostimulation evoked neurotransmitter-specific postsynaptic currents that could be triggered repeatedly and at various frequencies. Light-evoked behaviors and postsynaptic currents were significantly (P

Assuntos
Luz , Sinapses/fisiologia , Acetilcolina/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Neurônios Motores/fisiologia , Contração Muscular , Relaxamento Muscular , Transmissão Sináptica , Ácido gama-Aminobutírico/fisiologia
9.
Nature ; 446(7136): 633-9, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17410168

RESUMO

Our understanding of the cellular implementation of systems-level neural processes like action, thought and emotion has been limited by the availability of tools to interrogate specific classes of neural cells within intact, living brain tissue. Here we identify and develop an archaeal light-driven chloride pump (NpHR) from Natronomonas pharaonis for temporally precise optical inhibition of neural activity. NpHR allows either knockout of single action potentials, or sustained blockade of spiking. NpHR is compatible with ChR2, the previous optical excitation technology we have described, in that the two opposing probes operate at similar light powers but with well-separated action spectra. NpHR, like ChR2, functions in mammals without exogenous cofactors, and the two probes can be integrated with calcium imaging in mammalian brain tissue for bidirectional optical modulation and readout of neural activity. Likewise, NpHR and ChR2 can be targeted together to Caenorhabditis elegans muscle and cholinergic motor neurons to control locomotion bidirectionally. NpHR and ChR2 form a complete system for multimodal, high-speed, genetically targeted, all-optical interrogation of living neural circuits.


Assuntos
Halorrodopsinas/metabolismo , Luz , Vias Neurais/fisiologia , Vias Neurais/efeitos da radiação , Rodopsina/metabolismo , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Cálcio/análise , Cálcio/metabolismo , Cloretos/metabolismo , Eletrofisiologia , Halorrodopsinas/genética , Hipocampo/citologia , Camundongos , Rede Nervosa/fisiologia , Rede Nervosa/efeitos da radiação , Neurônios/fisiologia , Neurônios/efeitos da radiação , Oócitos/metabolismo , Oócitos/efeitos da radiação , Óptica e Fotônica , Ratos , Rodopsina/genética , Fatores de Tempo
10.
Curr Biol ; 15(24): 2279-84, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16360690

RESUMO

For studying the function of specific neurons in their native circuitry, it is desired to precisely control their activity. This often requires dissection to allow accurate electrical stimulation or neurotransmitter application , and it is thus inherently difficult in live animals, especially in small model organisms. Here, we employed channelrhodopsin-2 (ChR2), a directly light-gated cation channel from the green alga Chlamydomonas reinhardtii, in excitable cells of the nematode Caenorhabditis elegans, to trigger specific behaviors, simply by illumination. Channelrhodopsins are 7-transmembrane-helix proteins that resemble the light-driven proton pump bacteriorhodopsin , and they also utilize the chromophore all-trans retinal, but to open an intrinsic cation pore. In muscle cells, light-activated ChR2 evoked strong, simultaneous contractions, which were reduced in the background of mutated L-type, voltage-gated Ca2+-channels (VGCCs) and ryanodine receptors (RyRs). Electrophysiological analysis demonstrated rapid inward currents that persisted as long as the illumination. When ChR2 was expressed in mechanosensory neurons, light evoked withdrawal behaviors that are normally elicited by mechanical stimulation. Furthermore, ChR2 enabled activity of these neurons in mutants lacking the MEC-4/MEC-10 mechanosensory ion channel . Thus, specific neurons or muscles expressing ChR2 can be quickly and reversibly activated by light in live and behaving, as well as dissected, animals.


Assuntos
Caenorhabditis elegans/fisiologia , Chlamydomonas reinhardtii/química , Expressão Gênica , Canais Iônicos/metabolismo , Luz , Rodopsinas Sensoriais/metabolismo , Animais , Primers do DNA , Eletrofisiologia , Canais Iônicos/química , Microscopia de Fluorescência , Atividade Motora/fisiologia , Contração Muscular/fisiologia , Neurônios Aferentes/metabolismo , Fotoquímica , Rodopsinas Sensoriais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...