Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Foods ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672885

RESUMO

Orange processing generates peel by-products rich in phenolic compounds, particularly flavanones like hesperidin and narirutin, offering potential health benefits. Utilizing these by-products is of significant interest in supporting Spain's circular bioeconomy. Therefore, the aim of this study was to investigate the fermentation of orange peels by different lactic acid bacteria (LAB) strains and its impact on phenolic composition and antioxidant activity. Three different LAB strains, two Lactiplantibacillus plantarum, and one Levilactobacillus brevis were utilized. The phenolic compounds were measured by HPLC-ESI-TOF-MS, and antioxidant activity was assessed using DPPH and ABTS methods. The growth of the LAB strains varied, showing initial increases followed by gradual declines, with strain-specific patterns observed. Medium acidification occurred during fermentation. A phenolic analysis revealed an 11% increase in phenolic acids in peels fermented by La. plantarum CECT 9567-C4 after 24 h, attributed to glycosylation by LAB enzymes. The flavonoid content exhibited diverse trends, with Le. brevis showing an 8% increase. The antioxidant assays demonstrated strain- and time-dependent variations. Positive correlations were found between antioxidant activity and total phenolic compounds. The results underscore the importance of bacterial selection and fermentation time for tailored phenolic composition and antioxidant activity in orange peel extracts. LAB fermentation, particularly with La. plantarum CECT 9567 and Le. brevis, holds promise for enhancing the recovery of phenolic compounds and augmenting antioxidant activity in orange peels, suggesting potential applications in food and beverage processing.

2.
Front Microbiol ; 14: 1152597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206331

RESUMO

Avocado (Persea americana Mill.) is a tree crop of great social and economic importance. However, the crop productivity is hindered by fast-spreading diseases, which calls for the search of new biocontrol alternatives to mitigate the impact of avocado phytopathogens. Our objectives were to evaluate the antimicrobial activity of diffusible and volatile organic compounds (VOCs) produced by two avocado rhizobacteria (Bacillus A8a and HA) against phytopathogens Fusarium solani, Fusarium kuroshium, and Phytophthora cinnamomi, and assess their plant growth promoting effect in Arabidopsis thaliana. We found that, in vitro, VOCs emitted by both bacterial strains inhibited mycelial growth of the tested pathogens by at least 20%. Identification of bacterial VOCs by gas chromatography coupled to mass spectrometry (GC-MS) showed a predominance of ketones, alcohols and nitrogenous compounds, previously reported for their antimicrobial activity. Bacterial organic extracts obtained with ethyl acetate significantly reduced mycelial growth of F. solani, F. kuroshium, and P. cinnamomi, the highest inhibition being displayed by those from strain A8a (32, 77, and 100% inhibition, respectively). Tentative identifications carried out by liquid chromatography coupled to accurate mass spectrometry of diffusible metabolites in the bacterial extracts, evidenced the presence of some polyketides such as macrolactins and difficidin, hybrid peptides including bacillaene, and non-ribosomal peptides such as bacilysin, which have also been described in Bacillus spp. for antimicrobial activities. The plant growth regulator indole-3-acetic acid was also identified in the bacterial extracts. In vitro assays showed that VOCs from strain HA and diffusible compounds from strain A8a modified root development and increased fresh weight of A. thaliana. These compounds differentially activated several hormonal signaling pathways involved in development and defense responses in A. thaliana, such as auxin, jasmonic acid (JA) and salicylic acid (SA); genetic analyses suggested that developmental stimulation of the root system architecture by strain A8a was mediated by the auxin signaling pathway. Furthermore, both strains were able to enhance plant growth and decreased the symptoms of Fusarium wilt in A. thaliana when soil-inoculated. Collectively, our results evidence the potential of these two rhizobacterial strains and their metabolites as biocontrol agents of avocado pathogens and as biofertilizers.

3.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829856

RESUMO

The growing global consumption of avocados, associated with contents including bioactive compounds with numerous health-promoting properties, is producing a large amount of agro wastes around the world. Different management approaches are available for the recovery of bioactive compounds from wastes as potential ingredients for use in the production of functional foods and nutraceuticals. Lactic acid fermentation can be used to exploit nutritional potential and add value to agro wastes. In this study, fermentations with lactic acid bacteria were carried out in avocado leaves, and the total phenolic content and the antioxidant activity were determined by DPPH and FRAP assays from hydroalcoholic extracts obtained from fermented avocado leaves. Fifteen new phenolic compounds were identified for the first time in avocado leaves by HPLC-ESI-TOF-MS. L. plantarum CECT 748T and P. pentosaceus CECT 4695T showed the highest antioxidant activity. The sum of phenolic compounds was increased by 71, 62, 55 and 21% in fermentations with P. pentosaceus CECT 4695T, L. brevis CECT 5354, P. acidilactici CECT 5765T and L. plantarum CECT 9567, respectively, while it was reduced in the fermentation with L. plantarum 748T by 21% as demonstrated by HPLC-ESI-TOF-MS. Biotransformations induced by bacterial metabolism modified the phenolic compound profile of avocado leaves in a strain-specific-dependent manner. P. pentosaceus CECT 4695T significantly increased kaempferol, P. pentosaceus 4695T, L. brevis 5354 and L. plantarum 9567 increased rutin, and dihydro-p-coumaric acid was increased by the five selected lactic acid bacteria. Total flavonoids were highly increased after fermentations with the five selected lactic acid bacteria but flavonoid glucosides were decreased by L. plantarum 748T, which was related to its higher antioxidant activity. Our results suggest that lactic acid bacteria led the hydrolysis of compounds by enzymatic activity such as glycosidases or decarboxylase and the release of phenolics bound to the plant cell wall, thus improving their bioavailability.

4.
Antioxidants (Basel) ; 11(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326208

RESUMO

A sonotrode ultrasound-assisted extraction of phenolic compounds from olive leaves has been developed using a Box-Behnken design to optimize the effects of solvent composition and ultrasound parameters. The determination of single phenolic compounds was performed by HPLC-MS and the highest recovery in total compounds, oleuropein and hydroxytyrosol was achieved using EtOH/H2O (55:45, v/v), 8 min and 100% of amplitude. The optimal conditions were applied on leaves from seven olive cultivars grown under the same conditions and the results were compared with those found by using a conventional ultrasonic bath, obtaining no statistical differences. Moreover, antioxidant activity by FRAP, DPPH and ABTS in these olive leaf extracts was evaluated and they exhibited a significant correlation with oleuropein and total phenolic content. All cultivars of olive leaf extracts were found to be active against S. aureus and methicillin-resistant S. aureus with minimum bactericidal concentration (MBC) values) that ranged from 5.5 to 22.5 mg mL-1. No extracts showed antimicrobial activity against C. albicans. The percentages of mycelium reduction in B. cinerea ranged from 2.2 and 18.1%. Therefore, sonotrode could be considered as an efficient and fast extraction technique that could be easily scaled-up at industrial level, thus allowing for olive leaves to be revalorized.

5.
Biology (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34827085

RESUMO

In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01-105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.

6.
Arch Microbiol ; 203(7): 4593-4607, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34160629

RESUMO

Bark is a permanent surface for microbial colonization at the interface of trees and the surrounding air, but little is known about its microbial communities. We used shotgun metagenomic sequencing to analyze the bark microbiomes of avocado trees from two orchards, and compared one of them to rhizospheric soil. It was shown that the microbial communities of avocado bark have a well-defined taxonomic structure, with consistent patterns of abundance of bacteria, fungi, and archaea, even in trees from two different locations. Bark microbial communities were distinct from rhizospheric soil, although they showed overlap in some taxa. Thus, avocado bark is a well-defined environment, providing niches for specific taxonomic groups, many of which are also found in other aerial plant tissues. The present in-depth characterization of bark microbial communities can form a basis for their future manipulation for agronomical purposes.


Assuntos
Biodiversidade , Microbiota , Persea , Casca de Planta , Archaea/genética , Bactérias/genética , Fungos/genética , Fungos/fisiologia , Metagenômica , Microbiota/genética , Microbiota/fisiologia , Persea/microbiologia , Casca de Planta/microbiologia , Microbiologia do Solo
7.
PeerJ ; 8: e10074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033663

RESUMO

BACKGROUND: Alkamides are plant-specific bioactive molecules. They are low molecular weight N-substituted α-unsaturated acyl amides that display biological explicit activities in different organisms from bacteria, fungi, insects to mammals and plants. The acyl chain has been proposed to be biosynthesized from a fatty acid; however, this has not been demonstrated yet. Heliopsis longipes (Asteraceae) accumulates in root a C10 alkamide called affinin in its roots, but not in leaves. The closely related species Heliopsis annua does not produce alkamides. To elucidate the biosynthetic pathway of the alkamides acyl chain, a comparative global gene expression analysis contrasting roots and leaves of both species was performed. METHODS: Transcriptomics analysis allowed to identify genes highly expressed in H. longipes roots, but not in tissues and species that do not accumulate alkamides. The first domain searched was the Ketosynthase (KS) domain. The phylogenetic analysis using sequences of the KS domain of FAS and PKS from different organisms, revealed that KS domains of the differentially expressed transcripts in H. longipes roots and the KS domain found in transcripts of Echinacea purpurea, another alkamides producer species, were grouped together with a high bootstrap value of 100%, sharing great similarity. Among the annotated transcripts, we found some coding for the enzymatic domains KS, AT, ACP, DH, OR and TE, which presented higher expression in H. longipes roots than in leaves. The expression level of these genes was further evaluated by qRT-PCR. All unigenes tested showed higher expression in H. longipes roots than in any the other samples. Based on this and considering that the acyl chain of affinin presents unsaturated bonds at even C numbers, we propose a new putative biosynthesis pathway mediated by a four modules polyketide synthase (PKS). RESULTS: The global gene expression analysis led to the selection of a set of candidate genes involved in the biosynthesis of the acyl chain of affinin, suggesting that it may be performed by a non-iterative, partially reductive, four module type I PKS complex (PKS alk) previously thought to be absent from the plant kingdom.

8.
Ars pharm ; 61(2): 63-79, abr.-jun. 2020. tab, ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-188101

RESUMO

INTRODUCCIÓN: En diciembre de 2019, se detectaron los primeros casos de enfermedad respiratoria causada por un coronavirus emergente, al que se denominó SARS-CoV-2, que en los primeros meses de 2020 se ha extendido por todo el mundo con características de pandemia. MÉTODO: Se examinaron las publicaciones más relevantes en relación con los objetivos de la revisión. RESULTADOS: La enfermedad, conocida como COVID-19, cursa con tos, fiebre y dificultad respiratoria. Las formas más graves, que afectan principalmente a personas de edad avanzada y con determinadas comorbilidades, se manifiestan por afectación de la función respiratoria, que requiere ventilación mecánica, y síndrome de respuesta inflamatoria sistémica, que puede conducir a un choque séptico con fallo multiorgánico, y altas tasas de mortalidad. En esta revisión se examina el estado actual de conocimientos sobre las características y origen del SARS-CoV-2, su replicación, y la patogénesis, clínica, diagnóstico, tratamiento y prevención de COVID-19. CONCLUSIONES: Las características del SARS-CoV-2 y la clínica de COVID-19 son bien conocidas. La PCR es la técnica de referencia para el diagnóstico de laboratorio; se dispone de ensayos para detección de antígenos y de anticuerpos, con margen de optimización. Los protocolos de tratamiento incluyen la corrección de la respuesta inflamatoria sistémica y administración de agentes antivirales. Existen vacunas en desarrollo


INTRODUCTION: In December 2019, the first cases of respiratory disease caused by an emerging coronavirus were detected. The causative agento f the outbreak was called SARS-CoV-2, and in the first months of 2020 it spread throughout the world as a pandemic. METHOD: The most relevant publications concerned with the aims of the review were examined. RESULTS: The disease, known as COVID-19. Patients show cough, fever, and respiratory distress. The most severe forms, mainly affecting the elderly and associated with various comorbidities, are manifested by impaired respiratory function, requiring mechanical ventilation, and systemic inflammatory response syndrome, which can lead to septic shock with multi-organ failure and high mortality rates. This review examines the current state of knowledge about the characteristics and origin of SARS-CoV-2, its replication, and the pathogenesis, clinical, diagnosis, treatment, and prevention of COVID-19. CONCLUSIONS: The characteristics of SARS-CoV-2 and the clinical manifestations of COVID-19 are well known. PCR is the reference technique for laboratory diagnosis; assays for the detection of antigens and antibodies are available, with optimization possibilities. Treatment protocols include attenuation of the systemic inflammatory response and administration of antiviral agents. There are vaccines in development


Assuntos
Humanos , Infecções por Coronavirus , Pneumonia Viral , Betacoronavirus/patogenicidade , Pandemias , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Pneumonia Viral/diagnóstico , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia
9.
PeerJ ; 8: e8345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002327

RESUMO

BACKGROUND: In Mexico, coffee leaf rust (CLR) is the main disease that affects the Arabica coffee crop. In this study, the local response of two Mexican cultivars of Coffea arabica (Oro Azteca and Garnica) in the early stages of Hemileia vastatrix infection was evaluated. METHODS: We quantified the development of fungal structures in locally-infected leaf disks from both cultivars, using qRT-PCR to measure the relative expression of two pathogenesis recognition genes (CaNDR1 and CaNBS-LRR) and three genes associated with the salicylic acid (SA)-related pathway (CaNPR1, CaPR1, and CaPR5). RESULTS: Resistance of the cv. Oro Azteca was significantly higher than that of the cv. Garnica, with 8.2% and 53.3% haustorial detection, respectively. In addition, the non-race specific disease resistance gene (CaNDR1), a key gene for the pathogen recognition, as well as the genes associated with SA, CaNPR1, CaPR1, and CaPR5, presented an increased expression in response to infection by H. vastatrix in cv. Oro Azteca if comparing with cv. Garnica. Our results suggest that Oro Azteca's defense mechanisms could involve early recognition of CLR by NDR1 and the subsequent activation of the SA signaling pathway.

10.
Front Microbiol ; 11: 574110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510714

RESUMO

The structure and function of rhizosphere microbial communities are affected by the plant health status. In this study, we investigated the effect of root rot on the avocado rhizosphere microbiome, using 16S rDNA and ITS sequencing. Furthermore, we isolated potential fungal pathogens associated with root rot symptoms and assessed their pathogenic activity on avocado. We found that root rot did not affect species richness, diversity or community structure, but induced changes in the relative abundance of several microbial taxa. Root rot increased the proportion of Pseudomonadales and Burkholderiales in the rhizosphere but reduced that of Actinobacteria, Bacillus spp. and Rhizobiales. An increase in putative opportunistic fungal pathogens was also detected in the roots of symptomatic trees; the potential pathogenicity of Mortierella sp., Fusarium spp., Lasiodiplodia sp. and Scytalidium sp., is reported for the first time for the State of Veracruz, Mexico. Root rot also potentially modified the predicted functions carried out by rhizobacteria, reducing the proportion of categories linked with the lipid and amino-acid metabolisms whilst promoting those associated with quorum sensing, virulence, and antibiotic resistance. Altogether, our results could help identifying microbial taxa associated to the disease causal agents and direct the selection of plant growth-promoting bacteria for the development of biocontrol microbial consortia.

11.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387975

RESUMO

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Assuntos
Colletotrichum/fisiologia , DNA Intergênico , Introgressão Genética , Genoma de Planta , Interações Hospedeiro-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Doenças das Plantas , Duplicação Gênica , Magnoliopsida/genética , Magnoliopsida/microbiologia , Persea/genética , Persea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
12.
Arch Microbiol ; 201(3): 409-414, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30759265

RESUMO

Lactobacillus plantarum C4 (CECT 9567) was isolated from kefir and has been extensively studied because of its probiotic properties. Here we report the genome sequence of this strain. The genome consists of 3,221,350 bp, and contains 3058 CDSs with an average G + C content of 44.5%. The genome harbors genes encoding the AraC-family transcription regulator, the penicillin-binding protein Pbp2A, and the Na+/H+ antiporter NapA3, which have important roles in the survival of lactobacilli in the gastrointestinal tract. Also, the genome encodes the catalase KatE, NADH peroxidase and glutathione peroxidase, which enable anaerobic respiration, and a nitrate reductase complex, which enable anaerobic respiration. Additionally, genes encoding plantaricins and sactipeptides, and genes involved in the use of fructooligosaccharides and in the production of butyric acid were also identified. BLASTn analysis revealed that 91.4% of CDSs in C4 genome aligned with those of the reference strain L. plantarum WCFS1, with a mean identity of 98.96%. The genome information of L. plantarum C4 provides the basis for understanding the probiotic properties of C4 and to consider its use as a potential component of functional foods.


Assuntos
Genoma Bacteriano/genética , Kefir/microbiologia , Lactobacillus plantarum/genética , Lactobacillus plantarum/isolamento & purificação , Proteínas de Bactérias/genética , Composição de Bases/genética , Sequência de Bases , Lactobacillus plantarum/classificação , Lactobacillus plantarum/metabolismo , Probióticos , Análise de Sequência de DNA
13.
Microbiol Res ; 219: 74-83, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642469

RESUMO

Recent studies showed that bacterial volatile organic compounds (VOCs) play an important role in the suppression of phytopathogens. The ability of VOCs produced by avocado (Persea americana Mill.) rhizobacteria to suppress the growth of common avocado pathogens was therefore investigated. We evaluated the antifungal activity of VOCs emitted by avocado rhizobacteria in a first screening against Fusarium solani, and in subsequent antagonism assays against Fusarium sp. associated with Kuroshio shot hole borer, Colletotrichum gloeosporioides and Phytophthora cinnamomi, responsible for Fusarium dieback, anthracnosis and Phytophthora root rot in avocado, respectively. We also analyzed the composition of the bacterial volatile profiles by solid phase microextraction (SPME) gas chromatography coupled to mass spectrometry (GC-MS). Seven isolates, belonging to the bacterial genera Bacillus and Pseudomonas, reduced the mycelial growth of F. solani with inhibition percentages higher than 20%. Isolate HA, related to Bacillus amyloliquefaciens, significantly reduced the mycelial growth of Fusarium sp. and C. gloeosporioides and the mycelium density of P. cinnamomi. Isolates SO and SJJ, also members of the genus Bacillus, reduced Fusarium sp. mycelial growth and induced morphological alterations of fungal hyphae whilst isolate HB, close to B. mycoides, inhibited C. gloeosporioides. The analysis of the volatile profiles revealed the presence of ketones, pyrazines and sulfur-containing compounds, previously reported with antifungal activity. Altogether, our results support the potential of avocado rhizobacteria to act as biocontrol agents of avocado fungal pathogens and emphasize the importance of Bacillus spp. for the control of emerging avocado diseases such as Fusarium dieback.


Assuntos
Antifúngicos/farmacologia , Bacillus/metabolismo , Agentes de Controle Biológico/farmacologia , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Persea/microbiologia , Phytophthora/efeitos dos fármacos , Pseudomonas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Animais , Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Besouros/microbiologia , Compostos Orgânicos Voláteis/metabolismo
14.
PLoS One ; 13(3): e0194665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558512

RESUMO

Rhizobacteria associated with crops constitute an important source of potentially beneficial microorganisms with plant growth promoting activity or antagonistic effects against phytopathogens. In this study, we evaluated the plant growth promoting activity of 11 bacterial isolates that were obtained from the rhizosphere of healthy avocado trees and from that of avocado trees having survived root rot infestations. Seven bacterial isolates, belonging to the genera Bacillus, Pseudomonas and Arthrobacter, promoted in vitro growth of Arabidopsis thaliana. These isolates were then tested for antagonistic activity against Phytophthora cinnamomi, in direct dual culture assays. Two of those rhizobacterial isolates, obtained from symptomatic-declining trees, displayed antagonistic activity. Isolate A8a, which is closely related to Bacillus acidiceler, was also able to inhibit P. cinnamomi growth in vitro by 76% through the production of volatile compounds. Solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS) allowed to tentatively identify the main volatiles emitted by isolate A8a as 2,3,5-trimethylpyrazine, 6,10-dimethyl-5,9-undecadien-2-one and 3-amino-1,3-oxazolidin-2-one. These volatile compounds have been reported to show antifungal activity when produced by other bacterial isolates. These results confirm the significance of rhizobacteria and suggest that these bacteria could be used for biocontrol of soil borne oomycetes through their volatiles emissions.


Assuntos
Antibiose/fisiologia , Persea/microbiologia , Phytophthora/efeitos dos fármacos , Rhizobiaceae/fisiologia , Rizosfera , Compostos Orgânicos Voláteis/farmacologia , Antibiose/efeitos dos fármacos , Persea/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobiaceae/metabolismo , Solo/química , Microbiologia do Solo , Compostos Orgânicos Voláteis/metabolismo
15.
Antonie Van Leeuwenhoek ; 111(4): 563-572, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29124466

RESUMO

Plant rhizobacteria have been successfully used as biocontrol agents against fungal phytopathogens. However, their potential to control two important avocado diseases, namely Fusarium dieback (FD) and Phytophthora root rot (PRR), has been poorly studied. FD is an emerging disease triggered by fungi associated with two ambrosia beetle species (Euwallacea fornicatus species complex), while PRR is caused by Phytophthora cinnamomi, a soil-borne oomycete. In the present work, the antifungal activity of bacteria isolated from avocado rhizosphere was tested in dual culture assays against Fusarium euwallaceae, Graphium euwallaceae and Graphium sp., causal agents of FD, and against P. cinnamomi. In 2015, rhizosphere soil samples of FD infested and non-infested avocado trees were collected from a commercial avocado orchard in Escondido, California. In an initial screening, 72 of the 168 assessed bacterial isolates reduced mycelial growth of F. euwallaceae by up to 46%. Eight bacterial isolates showing inhibition percentages larger than 40% were then selected for further antagonism assays against the other fungal pathogens. Five bacterial isolates, determined by 16S rDNA sequencing to belong to the Bacillus subtilis/Bacillus amyloliquefaciens species complex, successfully inhibited the mycelial growth of both Graphium species by up to 30%. The same isolates and an additional isolate identified as Bacillus mycoides, inhibited the growth of P. cinnamomi by up to 25%. This is the first report of avocado rhizobacteria with antifungal activity against pathogens responsible for FD and PRR in avocado.


Assuntos
Ascomicetos/fisiologia , Bacillus/isolamento & purificação , Fusarium/fisiologia , Interações Microbianas/fisiologia , Persea/microbiologia , Phytophthora/fisiologia , Rizosfera , Animais , Antifúngicos/metabolismo , Bacillus/classificação , Bacillus/metabolismo , California , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Gorgulhos/microbiologia
16.
Sci Rep ; 7(1): 1939, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512356

RESUMO

We have previously reported that administration of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 to obese Zucker-Lepr fa/fa rats attenuates liver steatosis and exerts anti-inflammatory effects. The goal of the present work was to investigate the modulation of gene expression in intestinal mucosa samples of obese Zucker-Lepr fa/fa rats fed the probiotic strains using a DNA microarray and postgenomic techniques. We also measured secretory IgA content in the gut and lipopolysaccharide (LPS)-binding protein (LBP) in serum. Expression of three genes (Adamdec1, Ednrb and Ptgs1/Cox1) was up-regulated in the intestinal mucosa of the obese rats compared with that in the rats when they were still lean. Probiotic administration down-regulated expression of Adamdec1 and Ednrb at the mRNA and protein levels and that of Ptgs1/Cox1 at the mRNA level, and this effect was in part mediated by a decrease in both macrophage and dendritic cell populations. Probiotic treatment also increased secretory IgA content and diminished the LBP concentration. Based on results reported in this work and else where, we propose a possible mechanism of action for these bacterial strains.


Assuntos
Proteínas ADAM/genética , Ciclo-Oxigenase 1/genética , Enterite/etiologia , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Proteínas de Membrana/genética , Probióticos , Receptor de Endotelina B/genética , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Expressão Gênica , Mucosa Intestinal/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Obesidade , Fenótipo , Ratos , Ratos Zucker
17.
BMC Genomics ; 16: 599, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26268848

RESUMO

BACKGROUND: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. RESULTS: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. CONCLUSIONS: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process.


Assuntos
Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Persea/genética , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Persea/química , Persea/crescimento & desenvolvimento , Persea/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
18.
Res Microbiol ; 166(8): 626-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272025

RESUMO

Lactobacillus plantarum C4, previously isolated from kefir and characterized as a potential probiotic strain, was tested for its protective and immunomodulatory capacity in a murine model of yersiniosis. The inoculation of BALB/c mice with a low pathogenicity serotype O9 strain of Yersinia enterocolitica results in a prolonged intestinal infection with colonization of Peyer's patches. Pretreatment with C4 was without effect on fecal excretion of yersiniae, but shortened the colonization of Peyer's patches. This protective effect was associated with pro-inflammatory status in the intestinal mucosa (TNF-α production in infected mice was increased by C4) and an increase in total IgA secretion. At a systemic level, C4 did not promote a pro-inflammatory response, although production of the immunoregulatory cytokine IFN-γ was enhanced. These findings suggest that L. plantarum C4 can increase resistance to intestinal infections through its immunomodulatory activity.


Assuntos
Produtos Fermentados do Leite/microbiologia , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/fisiologia , Probióticos , Yersiniose/prevenção & controle , Yersinia enterocolitica , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Imunoglobulina A Secretora/imunologia , Imunomodulação , Interferon gama/sangue , Interferon gama/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Lactobacillus plantarum/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Fator de Necrose Tumoral alfa/imunologia , Yersiniose/imunologia , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/imunologia
19.
Plant Mol Biol ; 86(1-2): 35-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928490

RESUMO

Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. To date few studies have been performed to elucidate the signaling networks involved on adaptive responses to (CrVI) toxicity in plants. In this work, we report that depending upon its concentration, Cr(VI) alters in different ways the architecture of the root system in Arabidopsis thaliana seedlings. Low concentrations of Cr (20-40 µM) promoted primary root growth, while concentrations higher than 60 µM Cr repressed growth and increased formation of root hairs, lateral root primordia and adventitious roots. We analyzed global gene expression changes in seedlings grown in media supplied with 20 or 140 µM Cr. The level of 731 transcripts was significantly modified in response to Cr treatment with only five genes common to both Cr concentrations. Interestingly, 23 genes related to iron (Fe) acquisition were up-regulated including IRT1, YSL2, FRO5, BHLH100, BHLH101 and BHLH039 and the master controllers of Fe deficiency responses PYE and BTS were specifically activated in pericycle cells. It was also found that increasing concentration of Cr in the plant correlated with a decrease in Fe content, but increased both acidification of the rhizosphere and activity of the ferric chelate reductase. Supply of Fe to Cr-treated Arabidopsis allowed primary root to resume growth and alleviated toxicity symptoms, indicating that Fe nutrition is a major target of Cr stress in plants. Our results show that low Cr levels are beneficial to plants and that toxic Cr concentrations activate a low-Fe rescue system.


Assuntos
Arabidopsis/efeitos dos fármacos , Cromatos/toxicidade , Poluentes do Solo/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Ferro/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Transdução de Sinais/efeitos dos fármacos
20.
BMC Plant Biol ; 14: 69, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24649917

RESUMO

BACKGROUND: Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. RESULTS: We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. CONCLUSIONS: The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Hidroponia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...