Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848448

RESUMO

Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition, the overwhelming majority of copies are degenerate and immobile. Nevertheless, both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability, inflammation, or cellular senescence) on their hosts, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSD17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Locos de Características Quantitativas , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Genoma Humano , Transcriptoma/genética , RNA/genética , RNA/metabolismo , Regulação da Expressão Gênica , Linhagem Celular , Linfócitos/metabolismo
2.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37645920

RESUMO

Long interspersed element 1 (L1) are a family of autonomous, actively mobile transposons that occupy ~17% of the human genome. A number of pleiotropic effects induced by L1 (promoting genome instability, inflammation, or cellular senescence) have been observed, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSDB17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for transposon transcriptional regulators.

3.
Nat Aging ; 1(8): 715-733, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34514433

RESUMO

Neutrophils are the most abundant human white blood cell and constitute a first line of defense in the innate immune response. Neutrophils are short-lived cells, and thus the impact of organismal aging on neutrophil biology, especially as a function of biological sex, remains poorly understood. Here, we describe a multi-omic resource of mouse primary bone marrow neutrophils from young and old female and male mice, at the transcriptomic, metabolomic and lipidomic levels. We identify widespread regulation of neutrophil 'omics' landscapes with organismal aging and biological sex. In addition, we leverage our resource to predict functional differences, including changes in neutrophil responses to activation signals. To date, this dataset represents the largest multi-omics resource for neutrophils across sex and ages. This resource identifies neutrophil characteristics which could be targeted to improve immune responses as a function of sex and/or age.


Assuntos
Multiômica , Neutrófilos , Humanos , Masculino , Feminino , Animais , Camundongos , Imunidade Inata , Envelhecimento/genética , Perfilação da Expressão Gênica
4.
STAR Protoc ; 2(2): 100406, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33855308

RESUMO

Researchers need in vitro models that mirror the biology of organisms. Primary fibroblasts play essential roles in wound healing and are present in many tissues. They are widely used in studies of cell cycle control, reprogramming, and aging. Though extraction protocols exist, alternatives that maximize use of available resources are useful. Here, we present our protocol for extracting primary fibroblasts from adult mouse ear pinnae, an often-discarded source of primary cells, which consistently yield large, pure numbers of primary fibroblasts.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Pavilhão Auricular/citologia , Fibroblastos/citologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Development ; 147(11)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527937

RESUMO

Our understanding of the molecular regulation of aging and age-related diseases is still in its infancy, requiring in-depth characterization of the molecular landscape shaping these complex phenotypes. Emerging classes of molecules with promise as aging modulators include transposable elements, circRNAs and the mitochondrial transcriptome. Analytical complexity means that these molecules are often overlooked, even though they exhibit strong associations with aging and, in some cases, may directly contribute to its progress. Here, we review the links between these novel factors and age-related phenotypes, and we suggest tools that can be easily incorporated into existing pipelines to better understand the aging process.


Assuntos
Elementos de DNA Transponíveis/genética , Mitocôndrias/metabolismo , RNA Circular/metabolismo , Envelhecimento , Elementos Alu/genética , Animais , Instabilidade Genômica , Humanos , MicroRNAs/metabolismo , Mitocôndrias/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
6.
Transl Med Aging ; 4: 22-31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32462102

RESUMO

In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and deregulation of gene expression correlates with aging. A key layer in the study of gene regulation mechanisms lies at the level of chromatin: cellular chromatin states (i.e. the 'epigenome') can tune transcriptional profiles, and, in line with the prevalence of transcriptional alterations with aging, accumulating evidence suggests that the chromatin landscape is altered with aging across cell types and species. However, although alterations in the chromatin make-up of cells are considered to be a hallmark of aging, little is known of the genomic loci that are specifically affected by age-related chromatin state remodeling and of their biological significance. Here, we report the analysis of genome-wide profiles of core histone H3 occupancy in aging male mouse tissues (i.e. heart, liver, cerebellum and olfactory bulb) and primary cultures of neural stem cells. We find that, although no drastic changes in H3 levels are observed, local changes in H3 occupancy occur with aging across tissues and cells with both regions of increased or decreased occupancy. These changes are compatible with a general increase in chromatin accessibility at pro-inflammatory genes and may thus mechanistically underlie known shift in gene expression programs during aging.

7.
Hum Genet ; 139(3): 333-356, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31677133

RESUMO

Although aging is a conserved phenomenon across evolutionary distant species, aspects of the aging process have been found to differ between males and females of the same species. Indeed, observations across mammalian studies have revealed the existence of longevity and health disparities between sexes, including in humans (i.e. with a female or male advantage). However, the underlying mechanisms for these sex differences in health and lifespan remain poorly understood, and it is unclear which aspects of this dimorphism stem from hormonal differences (i.e. predominance of estrogens vs. androgens) or from karyotypic differences (i.e. XX vs. XY sex chromosome complement). In this review, we discuss the state of the knowledge in terms of sex dimorphism in various aspects of aging and in human age-related diseases. Where the interplay between sex differences and age-related differences has not been explored fully, we present the state of the field to highlight important future research directions. We also discuss various dietary, drug or genetic interventions that were shown to improve longevity in a sex-dimorphic fashion. Finally, emerging tools and models that can be leveraged to decipher the mechanisms underlying sex differences in aging are also briefly discussed.


Assuntos
Envelhecimento/fisiologia , Animais , Humanos , Longevidade/fisiologia , Caracteres Sexuais
8.
mBio ; 10(2)2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837345

RESUMO

The quest to manipulate microbiomes has intensified, but many microbial communities have proven to be recalcitrant to sustained change. Developing model communities amenable to genetic dissection will underpin successful strategies for shaping microbiomes by advancing an understanding of community interactions. We developed a model community with representatives from three dominant rhizosphere taxa, the Firmicutes, Proteobacteria, and Bacteroidetes We chose Bacillus cereus as a model rhizosphere firmicute and characterized 20 other candidates, including "hitchhikers" that coisolated with B. cereus from the rhizosphere. Pairwise analysis produced a hierarchical interstrain-competition network. We chose two hitchhikers, Pseudomonas koreensis from the top tier of the competition network and Flavobacterium johnsoniae from the bottom of the network, to represent the Proteobacteria and Bacteroidetes, respectively. The model community has several emergent properties, induction of dendritic expansion of B. cereus colonies by either of the other members, and production of more robust biofilms by the three members together than individually. Moreover, P. koreensis produces a novel family of alkaloid antibiotics that inhibit growth of F. johnsoniae, and production is inhibited by B. cereus We designate this community THOR, because the members are the hitchhikers of the rhizosphere. The genetic, genomic, and biochemical tools available for dissection of THOR provide the means to achieve a new level of understanding of microbial community behavior.IMPORTANCE The manipulation and engineering of microbiomes could lead to improved human health, environmental sustainability, and agricultural productivity. However, microbiomes have proven difficult to alter in predictable ways, and their emergent properties are poorly understood. The history of biology has demonstrated the power of model systems to understand complex problems such as gene expression or development. Therefore, a defined and genetically tractable model community would be useful to dissect microbiome assembly, maintenance, and processes. We have developed a tractable model rhizosphere microbiome, designated THOR, containing Pseudomonas koreensis, Flavobacterium johnsoniae, and Bacillus cereus, which represent three dominant phyla in the rhizosphere, as well as in soil and the mammalian gut. The model community demonstrates emergent properties, and the members are amenable to genetic dissection. We propose that THOR will be a useful model for investigations of community-level interactions.


Assuntos
Firmicutes/fisiologia , Interações Microbianas , Microbiota , Proteobactérias/fisiologia , Microbiologia do Solo , Bacteroidetes , Firmicutes/crescimento & desenvolvimento , Modelos Biológicos , Proteobactérias/crescimento & desenvolvimento , Rizosfera
9.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877115

RESUMO

Plants expend significant resources to select and maintain rhizosphere communities that benefit their growth and protect them from pathogens. A better understanding of assembly and function of rhizosphere microbial communities will provide new avenues for improving crop production. Secretion of antibiotics is one means by which bacteria interact with neighboring microbes and sometimes change community composition. In our analysis of a taxonomically diverse consortium from the soybean rhizosphere, we found that Pseudomonas koreensis selectively inhibits growth of Flavobacterium johnsoniae and other members of the Bacteroidetes grown in soybean root exudate. A genetic screen in P. koreensis identified a previously uncharacterized biosynthetic gene cluster responsible for the inhibitory activity. Metabolites were isolated based on biological activity and were characterized using tandem mass spectrometry, multidimensional nuclear magnetic resonance, and Mosher ester analysis, leading to the discovery of a new family of bacterial tetrahydropyridine alkaloids, koreenceine A to D (metabolites 1 to 4). Three of these metabolites are analogs of the plant alkaloid γ-coniceine. Comparative analysis of the koreenceine cluster with the γ-coniceine pathway revealed distinct polyketide synthase routes to the defining tetrahydropyridine scaffold, suggesting convergent evolution. Koreenceine-type pathways are widely distributed among Pseudomonas species, and koreenceine C was detected in another Pseudomonas species from a distantly related cluster. This work suggests that Pseudomonas and plants convergently evolved the ability to produce similar alkaloid metabolites that can mediate interbacterial competition in the rhizosphere.IMPORTANCE The microbiomes of plants are critical to host physiology and development. Microbes are attracted to the rhizosphere due to massive secretion of plant photosynthates from roots. Microorganisms that successfully join the rhizosphere community from bulk soil have access to more abundant and diverse molecules, producing a highly competitive and selective environment. In the rhizosphere, as in other microbiomes, little is known about the genetic basis for individual species' behaviors within the community. In this study, we characterized competition between Pseudomonas koreensis and Flavobacterium johnsoniae, two common rhizosphere inhabitants. We identified a widespread gene cluster in several Pseudomonas spp. that is necessary for the production of a novel family of tetrahydropyridine alkaloids that are structural analogs of plant alkaloids. We expand the known repertoire of antibiotics produced by Pseudomonas in the rhizosphere and demonstrate the role of the metabolites in interactions with other rhizosphere bacteria.


Assuntos
Alcaloides/metabolismo , Flavobacterium/crescimento & desenvolvimento , Pseudomonas/fisiologia , Pirrolidinas/metabolismo , Rizosfera , Interações Microbianas , Microbiologia do Solo
10.
BMB Rep ; 52(1): 86-108, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30526773

RESUMO

In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].


Assuntos
Envelhecimento/genética , Longevidade/genética , Transcriptoma/genética , Animais , Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Homeostase , Humanos , Fenótipo , RNA não Traduzido/genética , RNA não Traduzido/fisiologia
11.
Genome Announc ; 5(26)2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663293

RESUMO

Pseudomonas koreensis CI12 was coisolated with Bacillus cereus from a root of a soybean plant grown in a field in Arlington, WI. Here, we report the draft genome sequence of P. koreensis CI12 obtained by Illumina sequencing.

12.
Genome Announc ; 5(4)2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28126949

RESUMO

Flavobacterium johnsoniae CI04 was coisolated with Bacillus cereus from a root of a field-grown soybean plant in Arlington, WI, and selected as a model for studying commensalism between members of the Cytophaga-Flavobacterium-Bacteroides group and B. cereus Here we report the draft genome sequence of F. johnsoniae CI04 obtained by Illumina sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...