Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113514, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041814

RESUMO

During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.


Assuntos
Hipóxia Encefálica , Nitritos , Humanos , Nitritos/metabolismo , Astrócitos/metabolismo , Óxido Nítrico/metabolismo , Molibdênio/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Mitocôndrias/metabolismo , Hipóxia Encefálica/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Circulação Cerebrovascular
2.
Nat Commun ; 14(1): 8380, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104196

RESUMO

How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons. The protein-to-lipid ratio decreases in astrocytes and increases in neurons. Aged astrocytes show morphological atrophy quantified by the decreased length of branches, decreased volume fraction of leaflets, and shrinkage of the anatomical domain. Atrophy correlates with the loss of gap junction coupling between astrocytes and increased input resistance. Aging is accompanied by the upregulation of glial fibrillary acidic protein (GFAP) and downregulation of membrane-cytoskeleton linker ezrin associated with leaflets. No significant changes in neuronal excitability or spontaneous inhibitory postsynaptic signaling is observed. Thus, brain aging is associated with the impaired morphological presence and mitochondrial malfunction of cortical astrocytes, but not neurons.


Assuntos
Astrócitos , Córtex Cerebral , Humanos , Idoso , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Atrofia/metabolismo
3.
Biophys Rev ; 15(5): 1303-1333, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37975000

RESUMO

Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.

4.
Function (Oxf) ; 4(4): zqad019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342415

RESUMO

Locomotion triggers a coordinated response of both neurons and astrocytes in the brain. Here we performed calcium (Ca2+) imaging of these two cell types in the somatosensory cortex in head-fixed mice moving on the airlifted platform. Ca2+ activity in astrocytes significantly increased during locomotion from a low quiescence level. Ca2+ signals first appeared in the distal processes and then propagated to astrocytic somata, where it became significantly larger and exhibited oscillatory behaviour. Thus, astrocytic soma operates as both integrator and amplifier of Ca2+ signal. In neurons, Ca2+ activity was pronounced in quiescent periods and further increased during locomotion. Neuronal Ca2+ concentration ([Ca2+]i) rose almost immediately following the onset of locomotion, whereas astrocytic Ca2+ signals lagged by several seconds. Such a long lag suggests that astrocytic [Ca2+]i elevations are unlikely to be triggered by the activity of synapses among local neurons. Ca2+ responses to pairs of consecutive episodes of locomotion did not significantly differ in neurons, while were significantly diminished in response to the second locomotion in astrocytes. Such astrocytic refractoriness may arise from distinct mechanisms underlying Ca2+ signal generation. In neurons, the bulk of Ca2+ enters through the Ca2+ channels in the plasma membrane allowing for steady-level Ca2+ elevations in repetitive runs. Astrocytic Ca2+ responses originate from the intracellular stores, the depletion of which affects subsequent Ca2+ signals. Functionally, neuronal Ca2+ response reflects sensory input processed by neurons. Astrocytic Ca2+ dynamics is likely to provide metabolic and homeostatic support within the brain active milieu.


Assuntos
Astrócitos , Cálcio , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Neurônios/metabolismo , Cálcio da Dieta/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362260

RESUMO

Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.


Assuntos
Pentilenotetrazol , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Maleato de Dizocilpina , Hipocampo/metabolismo , Plasticidade Neuronal , Pentilenotetrazol/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/induzido quimicamente
6.
Acta Physiol (Oxf) ; 236(1): e13847, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35653278

RESUMO

AIM: A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism. We tested how HFD affects astrocyte metabolism, morphology, and physiology. METHODS: We used Raman microspectroscopy to assess the redox state of mitochondria and lipid content in astrocytes and neurons in hippocampal slices of mice subjected to HFD. Astrocytes were loaded with fluorescent dye through patch pipette for morphological analysis. Whole-cell voltage-clamp recordings were performed to measure transporter and potassium currents. Western blot analysis quantified the expression of astrocyte-specific proteins. Field potential recordings measured the magnitude of long-term potentiation (LTP). Open filed test was performed to evaluate the effect of HFD on animal behavior. RESULTS: We found that exposure of young mice to 1 month of HFD increases lipid content and relative amount of reduced cytochromes in astrocytes but not in neurons. Metabolic changes were paralleled with an enlargement of astrocytic territorial domains due to an increased outgrowth of branches and leaflets. Astrocyte remodeling was associated with an increase in expression of ezrin and with no changes in glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1), and glutamine synthetase (GS). Such physiological (non-reactive) enlargement of astrocytes in the brain active milieu promoted glutamate clearance and LTP and translated into behavioral changes. CONCLUSION: Dietary fat intake is not invariably harmful and might exert beneficial effects depending on the biological context.


Assuntos
Astrócitos , Dieta Hiperlipídica , Animais , Astrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Lipídeos , Camundongos , Plasticidade Neuronal
7.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119034, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33836176

RESUMO

We analysed spatiotemporal properties of Ca2+ signals in protoplasmic astrocytes in the CA1 stratum radiatum of hippocampal slices from young (2-3 months old) mice housed in control conditions or exposed to a caloric restriction (CR) diet for one month. The astrocytic Ca2+ events became shorter in duration and smaller in size; they also demonstrated reduced velocity of expansion and shrinkage following CR. At the same time, Ca2+ signals in the astrocytes from the CR animals demonstrated higher amplitude and the faster rise and decay rates. These changes can be attributed to CR-induced morphological remodelling and uncoupling of astrocytes described in our previous study. CR-induced changes in the parameters of Ca2+ activity were partially reversed by inhibition of gap junctions/hemichannels with carbenoxolone (CBX). The effect of CBX on Ca2+ activity in CR-animals was unexpected because the diet already decreases gap junctional coupling in astrocytic syncytia. It may reflect the blockade of hemichannels also sensitive to this drug. Thus, CR-induced morphological remodelling of astrocytes is at least partly responsible for changes in the pattern of Ca2+ activity in the astrocytic network. How such changes in spatiotemporal Ca2+ landscape can translate into astrocytic physiology and neuron-glia interactions remains a matter for future studies.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/fisiologia , Restrição Calórica/métodos , Dieta/métodos , Junções Comunicantes/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neurônios/metabolismo , Análise Espaço-Temporal
8.
Aging Cell ; 20(3): e13334, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675569

RESUMO

Little is known about age-dependent changes in structure and function of astrocytes and of the impact of these on the cognitive decline in the senescent brain. The prevalent view on the age-dependent increase in reactive astrogliosis and astrocytic hypertrophy requires scrutiny and detailed analysis. Using two-photon microscopy in conjunction with 3D reconstruction, Sholl and volume fraction analysis, we demonstrate a significant reduction in the number and the length of astrocytic processes, in astrocytic territorial domains and in astrocyte-to-astrocyte coupling in the aged brain. Probing physiology of astrocytes with patch clamp, and Ca2+ imaging revealed deficits in K+ and glutamate clearance and spatiotemporal reorganisation of Ca2+ events in old astrocytes. These changes paralleled impaired synaptic long-term potentiation (LTP) in hippocampal CA1 in old mice. Our findings may explain the astroglial mechanisms of age-dependent decline in learning and memory.


Assuntos
Envelhecimento/patologia , Astrócitos/patologia , Plasticidade Neuronal , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Tamanho Celular , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Longevidade/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Potássio/metabolismo
9.
Front Cell Neurosci ; 15: 645068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746715

RESUMO

Neuronal firing and neuron-to-neuron synaptic wiring are currently widely described as orchestrated by astrocytes-elaborately ramified glial cells tiling the cortical and hippocampal space into non-overlapping domains, each covering hundreds of individual dendrites and hundreds thousands synapses. A key component to astrocytic signaling is the dynamics of cytosolic Ca2+ which displays multiscale spatiotemporal patterns from short confined elemental Ca2+ events (puffs) to Ca2+ waves expanding through many cells. Here, we synthesize the current understanding of astrocyte morphology, coupling local synaptic activity to astrocytic Ca2+ in perisynaptic astrocytic processes and morphology-defined mechanisms of Ca2+ regulation in a distributed model. To this end, we build simplified realistic data-driven spatial network templates and compile model equations as defined by local cell morphology. The input to the model is spatially uncorrelated stochastic synaptic activity. The proposed modeling approach is validated by statistics of simulated Ca2+ transients at a single cell level. In multicellular templates we observe regular sequences of cell entrainment in Ca2+ waves, as a result of interplay between stochastic input and morphology variability between individual astrocytes. Our approach adds spatial dimension to the existing astrocyte models by employment of realistic morphology while retaining enough flexibility and scalability to be embedded in multiscale heterocellular models of neural tissue. We conclude that the proposed approach provides a useful description of neuron-driven Ca2+-activity in the astrocyte syncytium.

10.
Pflugers Arch ; 473(5): 753-774, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32979108

RESUMO

Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.


Assuntos
Envelhecimento/patologia , Astenia/patologia , Astrócitos/metabolismo , Encéfalo/fisiologia , Animais , Astrócitos/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Senescência Celular , Humanos
11.
Cell Rep ; 33(2): 108255, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053337

RESUMO

Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing.


Assuntos
Astrócitos/fisiologia , Região CA1 Hipocampal/fisiologia , Ritmo Circadiano/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Região CA1 Hipocampal/ultraestrutura , Relógios Circadianos/genética , Corticosterona/metabolismo , Escuridão , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Filamentos do Neurópilo/metabolismo , Teste de Campo Aberto , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Fatores de Tempo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
12.
Cell Death Dis ; 11(3): 208, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231202

RESUMO

Calorie-restricted (CR) diet has multiple beneficial effects on brain function. Here we report morphological and functional changes in hippocampal astrocytes in 3-months-old mice subjected to 1 month of the diet. Whole-cell patch-clamp recordings were performed in the CA1 stratum (str.) radiatum astrocytes of hippocampal slices. The cells were also loaded with fluorescent dye through the patch pipette. CR did not affect the number of astrocytic branches but increased the volume fraction (VF) of distal perisynaptic astrocytic leaflets. The astrocyte growth did not lead to a decrease in the cell input resistance, which may be attributed to a decrease in astrocyte coupling through the gap junctions. Western blotting revealed a decrease in the expression of Cx43 but not Cx30. Immunocytochemical analysis demonstrated a decrease in the density and size of Cx43 clusters. Cx30 cluster density did not change, while their size increased in the vicinity of astrocytic soma. CR shortened K+ and glutamate transporter currents in astrocytes in response to 5 × 50 Hz Schaffer collateral stimulation. However, no change in the expression of astrocytic glutamate transporter 1 (GLT-1) was observed, while the level of glutamine synthetase (GS) decreased. These findings suggest that enhanced enwrapping of synapses by the astrocytic leaflets reduces glutamate and K+ spillover. Reduced spillover led to a decreased contribution of extrasynaptic N2B containing N-methyl-D-aspartate receptors (NMDARs) to the tail of burst-induced EPSCs. The magnitude of long-term potentiation (LTP) in the glutamatergic CA3-CA1 synapses was significantly enhanced after CR. This enhancement was abolished by N2B-NMDARs antagonist. Our findings suggest that astrocytic morphofunctional remodeling is responsible for enhanced synaptic plasticity, which provides a basis for improved learning and memory reported after CR.


Assuntos
Astrócitos/metabolismo , Restrição Calórica/métodos , Hipocampo/imunologia , Plasticidade Neuronal/imunologia , Animais , Masculino , Camundongos
13.
Nat Commun ; 11(1): 131, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919423

RESUMO

Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca2+]. Blockade of Ca2+-dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow.


Assuntos
Astrócitos/fisiologia , Pressão Sanguínea/fisiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Hemodinâmica , Homeostase , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia
14.
Front Aging Neurosci ; 11: 223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496947

RESUMO

Middle cerebral artery occlusion (MCAO) induces ischemia characterized by a densely ischemic focus, and a less densely ischemic penumbral zone in which neurons and astrocytes display age-dependent dynamic variations in spontaneous Ca2+ activities. However, it is unknown whether penumbral nerve cells respond to sensory stimulation early after stroke onset, which is critical for understanding stimulation-induced stroke therapy. In this study, we investigated the ischemic penumbra's capacity to respond to somatosensory input. We examined adult (3- to 4-month-old) and old (18- to 24-month-old) male mice at 2-4 h after MCAO, using two-photon microscopy to record somatosensory stimulation-induced neuronal and astrocytic Ca2+ signals in the ischemic penumbra. In both adult and old mice, MCAO abolished spontaneous and stimulation-induced electrical activity in the penumbra, and strongly reduced stimulation-induced Ca2+ responses in neuronal somas (35-82%) and neuropil (92-100%) in the penumbra. In comparison, after stroke, stimulation-induced astrocytic Ca2+ responses in the penumbra were only moderately reduced (by 54-62%) in adult mice, and were even better preserved (reduced by 31-38%) in old mice. Our results suggest that somatosensory stimulation evokes astrocytic Ca2+ activity in the ischemic penumbra. We hypothesize that the relatively preserved excitability of astrocytes, most prominent in aged mice, may modulate protection from ischemic infarcts during early somatosensory activation of an ischemic cortical area. Future neuroprotective efforts in stroke may target spontaneous or stimulation-induced activity of astrocytes in the ischemic penumbra.

15.
J Theor Biol ; 469: 137-147, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30831173

RESUMO

Octopus cells (OCs) of the mammalian auditory brainstem precisely encode timing of fast transient sounds and tone onsets. Sharp temporal fidelity of OCs relies on low resting membrane resistance, which suggests high energy expenditure on maintaining ion gradients across plasma membrane. We provide a model-based estimate of energy consumption in resting and spiking OCs. Our results predict that a resting OC consumes up to 2.6 × 109 ATP molecules (ATPs) per second which remarkably exceeds energy consumption of other CNS neurons. Glucose usage by all OCs in the rat is nevertheless low due to their low number. Major part of the OCs energy use results from the ion mechanisms providing for the low membrane resistance: hyperpolarization-activated mixed cation conductance and low-voltage activated K+-conductance. Spatially ordered synapses-a feature of the OCs allowing them to compensate for asynchrony of the synaptic input-brings only a 12% energy saving to OCs excitability cost. Only 13% of total OC energy used for an AP generation (1.5 × 107 ATPs) is associated with the AP generation in the axon initial segment, 64%-with synaptic currents processing and 23%-with keeping resting potential.


Assuntos
Percepção Auditiva/fisiologia , Tronco Encefálico/citologia , Metabolismo Energético , Modelos Neurológicos , Neurônios/metabolismo , Potenciais de Ação , Cóclea/fisiologia , Glucose/metabolismo , Ativação do Canal Iônico , Temperatura , Fatores de Tempo
16.
Glia ; 67(1): 37-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427548

RESUMO

Experimental focal cortical ischemic lesions consist of an ischemic core and a potentially salvageable peri-ischemic region, the ischemic penumbra. The activity of neurons and astrocytes is assumed to be suppressed in the penumbra because the electrical function is interrupted, but this is incompletely elucidated. Most experimental stroke studies used young adult animals, whereas stroke is prevalent in the elderly population. Using two-photon imaging in vivo, we here demonstrate extensive but electrically silent, spontaneous Ca2+ activity in neurons and astrocytes in the ischemic penumbra of 18- to 24-month-old mice 2-4 hr after middle cerebral artery occlusion. In comparison, stroke reduced spontaneous Ca2+ activity in neurons and astrocytes in adult mice (3-4 months of age). In aged mice, stroke increased astrocytic spontaneous Ca2+ activity considerably while neuronal spontaneous Ca2+ activity was unchanged. Blockade of action potentials and of purinergic receptors strongly reduced spontaneous Ca2+ activity in both neurons and astrocytes in the penumbra of old stroke mice. This indicates that stroke had a direct influence on mechanisms in presynaptic terminals and on purinergic signaling. Thus, highly dynamic variations in spontaneous Ca2+ activity characterize the electrically compromised penumbra, with remarkable differences between adult and old mice. The data are consistent with the notion that aged neurons and astrocytes take on a different phenotype than young mice. The increased activity of the aged astrocyte phenotype may be harmful to neurons. We suggest that the abundant spontaneous Ca2+ activity in astrocytes in the ischemic penumbra of old mice may be a novel target for neuroprotection strategies. A video abstract of this article can be found at https://youtu.be/AKlwKFsz1qE.


Assuntos
Envelhecimento/metabolismo , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/patologia , Isquemia Encefálica/patologia , Eletrocorticografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
17.
Front Cell Neurosci ; 12: 248, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174590

RESUMO

Distal astrocytic processes have a complex morphology, reminiscent of branchlets and leaflets. Astrocytic branchlets are rod-like processes containing mitochondria and endoplasmic reticulum, capable of generating inositol-3-phosphate (IP3)-dependent Ca2+ signals. Leaflets are small and flat processes that protrude from branchlets and fill the space between synapses. Here we use three-dimensional (3D) reconstructions from serial section electron microscopy (EM) of rat CA1 hippocampal neuropil to determine the astrocytic coverage of dendritic spines, shafts and axonal boutons. The distance to the maximum of the astrocyte volume fraction (VF) correlated with the size of the spine when calculated from the center of mass of the postsynaptic density (PSD) or from the edge of the PSD, but not from the spine surface. This suggests that the astrocytic coverage of small and larger spines is similar in hippocampal neuropil. Diffusion simulations showed that such synaptic microenvironment favors glutamate spillover and extrasynaptic receptor activation at smaller spines. We used complexity and entropy measures to characterize astrocytic branchlets and leaflets. The 2D projections of astrocytic branchlets had smaller spatial complexity and entropy than leaflets, consistent with the higher structural complexity and less organized distribution of leaflets. The VF of astrocytic leaflets was highest around dendritic spines, lower around axonal boutons and lowest around dendritic shafts. In contrast, the VF of astrocytic branchlets was similarly low around these three neuronal compartments. Taken together, these results suggest that astrocytic leaflets preferentially contact synapses as opposed to the dendritic shaft, an arrangement that might favor neurotransmitter spillover and extrasynaptic receptor activation along dendritic shafts.

18.
Front Cell Neurosci ; 12: 250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154700

RESUMO

Calcium transients in thin astrocytic processes can be important in synaptic plasticity, but their mechanism is not completely understood. Clearance of synaptic glutamate leads to increase in astrocytic sodium. This can electrochemically favor the reverse mode of the Na/Ca-exchanger (NCX) and allow calcium into the cell, accounting for activity-dependent calcium transients in perisynaptic astrocytic processes. However, cytosolic sodium and calcium are also allosteric regulators of the NCX, thus adding kinetic constraints on the NCX-mediated fluxes and providing for complexity of the system dynamics. Our modeling indicates that the calcium-dependent activation and also calcium-dependent escape from the sodium-mediated inactive state of the NCX in astrocytes can form a positive feedback loop and lead to regenerative calcium influx. This can result in sodium-dependent amplification of calcium transients from nearby locations or other membrane mechanisms. Prolonged conditions of elevated sodium, for example in ischemia, can also lead to bistability in cytosolic calcium levels, where a delayed transition to the high-calcium state can be triggered by a short calcium transient. These theoretical predictions call for a dedicated experimental estimation of the kinetic parameters of the astrocytic Na/Ca-exchanger.

19.
Front Mol Neurosci ; 11: 215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997475

RESUMO

Epilepsy is a group of neurological disorders commonly associated with the neuronal malfunction leading to generation of seizures. Recent reports point to a possible contribution of astrocytes into this pathology. We used the lithium-pilocarpine model of status epilepticus (SE) in rats to monitor changes in astrocytes. Experiments were performed in acute hippocampal slices 2-4 weeks after SE induction. Nissl staining revealed significant neurodegeneration in the pyramidal cell layers of hippocampal CA1, CA3 areas, and the hilus, but not in the granular cell layer of the dentate gyrus. A significant increase in the density of astrocytes stained with an astrocyte-specific marker, sulforhodamine 101, was observed in CA1 stratum (str.) radiatum. Astrocytes in this area were also whole-cell loaded with a morphological tracer, Alexa Fluor 594, for two-photon excitation imaging. Sholl analyses showed no changes in the size of the astrocytic domain or in the number of primary astrocytic branches, but a significant reduction in the number of distal branches that are resolved with diffraction-limited light microscopy (and are thought to contain Ca2+ stores, such as mitochondria and endoplasmic reticulum). The atrophy of astrocytic branches correlated with the reduced size, but not overall frequency of Ca2+ events. The volume tissue fraction of nanoscopic (beyond the diffraction limit) astrocytic leaflets showed no difference between control and SE animals. The results of spatial entropy-complexity spectrum analysis were also consistent with changes in ratio of astrocytic branches vs. leaflets. In addition, we observed uncoupling of astrocytes through the gap-junctions, which was suggested as a mechanism for reduced K+ buffering. However, no significant difference in time-course of synaptically induced K+ currents in patch-clamped astrocytes argued against possible alterations in K+ clearance by astrocytes. The magnitude of long-term-potentiation (LTP) was reduced after SE. Exogenous D-serine, a co-agonist of NMDA receptors, has rescued the initial phase of LTP. This suggests that the reduced Ca2+-dependent release of D-serine by astrocytes impairs initiation of synaptic plasticity. However, it does not explain the failure of LTP maintenance which may be responsible for cognitive decline associated with epilepsy.

20.
Brain ; 141(7): 2032-2046, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053174

RESUMO

Spreading depolarization is assumed to be the mechanism of migraine with aura, which is accompanied by an initial predominant hyperaemic response followed by persistent vasoconstriction. Cerebral blood flow responses are impaired in patients and in experimental animals after spreading depolarization. Understanding the regulation of cortical blood vessels during and after spreading depolarization could help patients with migraine attacks, but our knowledge of these vascular mechanisms is still incomplete. Recent findings show that control of cerebral blood flow does not only occur at the arteriole level but also at capillaries. Pericytes are vascular mural cells that can constrict or relax around capillaries, mediating local cerebral blood flow control. They participate in the constriction observed during brain ischaemia and might be involved the disruption of the microcirculation during spreading depolarization. To further understand the regulation of cerebral blood flow in spreading depolarization, we examined penetrating arterioles and capillaries with respect to vascular branching order, pericyte location and pericyte calcium responses during somatosensory stimulation and spreading depolarization. Mice expressing a red fluorescent indicator and intravenous injections of FITC-dextran were used to visualize pericytes and vessels, respectively, under two-photon microscopy. By engineering a genetically encoded calcium indicator we could record calcium changes in both pericytes around capillaries and vascular smooth muscle cells around arterioles. We show that somatosensory stimulation evoked a decrease in cytosolic calcium in pericytes located on dilating capillaries, up to the second order capillaries. Furthermore, we show that prolonged vasoconstriction following spreading depolarization is strongest in first order capillaries, with a persistent increase in pericyte calcium. We suggest that the persistence of the 'spreading cortical oligaemia' in migraine could be caused by this constriction of cortical capillaries. After spreading depolarization, somatosensory stimulation no longer evoked changes in capillary diameter and pericyte calcium. Thus, calcium changes in pericytes located on first order capillaries may be a key determinant in local blood flow control and a novel vascular mechanism in migraine. We suggest that prevention or treatment of capillary constriction in migraine with aura, which is an independent risk factor for stroke, may be clinically useful.


Assuntos
Capilares/fisiologia , Circulação Cerebrovascular/fisiologia , Pericitos/fisiologia , Animais , Arteríolas/fisiologia , Encéfalo/irrigação sanguínea , Isquemia Encefálica/fisiopatologia , Cálcio/metabolismo , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Masculino , Camundongos , Enxaqueca com Aura/fisiopatologia , Enxaqueca com Aura/terapia , Acidente Vascular Cerebral/fisiopatologia , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...