Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(5): 4131-4137, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30879818

RESUMO

The objective of this research was to evaluate the effects of corn silage inclusion in starter feed provided to calves after birth through weaning at 7 wk of age. Thirty-six heifer calves and 9 bull calves were individually housed in hutches. Calves in treatment groups received pasteurized milk with all calf starter, 25% calf starter and 75% corn silage, or all corn silage. Values were recorded daily for feed intake and health, which included fecal, respiratory, and attitude scores; and at wk 2, 4, and 8 for concentrations of serum protein, hematocrit, and serum ß-hydroxybutyrate. Body weight, withers height, and hip height were measured at wk 2, 4, 8, and 52. Nine bull calves (3/treatment) were killed at 8 wk of age for assessment of rumen and intestinal tissue morphology. Feed intake and average daily gain were not different among treatments. Least squares means of rumen papillae lengths were significantly different and decreased as corn silage inclusion increased. Crypt depths and total thickness of epithelium were reduced for the corn silage group. Least squares means of body weight, heart girth, hip height, withers height, serum protein, hematocrit, and ß-hydroxybutyrate concentrations did not differ among treatments. These data indicated that the mixture of corn silage and starter did not affect growth, feed intake, or intestinal morphology but did affect rumen wall morphology. Feeding solely corn silage as starter feed stunted the growth of rumen papillae and tended to impair intestinal morphology, indicating that only calf starter or a mixture of calf starter and corn silage is more appropriate.


Assuntos
Bovinos , Dieta/veterinária , Silagem , Zea mays , Ácido 3-Hidroxibutírico/sangue , Animais , Peso Corporal , Bovinos/sangue , Fezes , Feminino , Masculino , Rúmen/metabolismo , Desmame
2.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30367001

RESUMO

Gastrointestinal tract (GIT) microorganisms play important roles in the health of ruminant livestock and affect the production of agriculturally relevant products, including milk and meat. Despite this link, interventions to alter the adult microbiota to improve production have proven ineffective, as established microbial communities are resilient to change. In contrast, developing communities in young animals may be more easily altered but are less well studied. Here, we measured the GIT-associated microbiota of 45 Holstein dairy cows from 2 weeks to the first lactation cycle, using Illumina amplicon sequencing of bacterial (16S rRNA V4), archaeal (16S rRNA V6 to V8), and fungal (internal transcribed region 1 [ITS1]) communities. Fecal and ruminal microbiota of cows raised on calf starter grains and/or corn silage were correlated to lifetime growth as well as milk production during the first lactation cycle, in order to determine whether early-life diets have long-term impacts. Significant diet-associated differences in total microbial communities and specific taxa were observed by weaning (8 weeks), but all animals reached an adult-like composition between weaning and 1 year. While some calf-diet-driven differences were apparent in the microbiota of adult cows, these dissimilarities did not correlate with animal growth or milk production. This finding suggests that initial microbial community establishment is affected by early-life diet but postweaning factors have a greater influence on adult communities and production outcomes.IMPORTANCE The gut microbiota is essential for the survival of many organisms, including ruminants that rely on microorganisms for nutrient acquisition from dietary inputs for the production of products such as milk and meat. While alteration of the adult ruminant microbiota to improve production is possible, changes are often unstable and fail to persist. In contrast, the early-life microbiota may be more amenable to sustained modification. However, few studies have determined the impact of early-life interventions on downstream production. Here, we investigated the impact of agriculturally relevant calf diets, including calf starter and corn silage, on gut microbial communities, growth, and production through the first lactation cycle. Thus, this work serves to further our understanding of early-life microbiota acquisition, as well as informing future practices in livestock management.


Assuntos
Bovinos/microbiologia , Dieta/veterinária , Microbioma Gastrointestinal/fisiologia , Leite/metabolismo , Aumento de Peso , Ração Animal/análise , Animais , Bovinos/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Masculino , RNA Arqueal/análise , RNA Bacteriano/análise , RNA Fúngico/análise , RNA Ribossômico 16S/análise , Rúmen/microbiologia
3.
Sci Rep ; 7: 40864, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098248

RESUMO

Development of the dairy calf gastrointestinal tract (GIT) and its associated microbiota are essential for survival and milk production, as this community is responsible for converting plant-based feeds into accessible nutrients. However, little is known regarding the establishment of microbes in the calf GIT. Here, we measured fecal-associated bacterial, archaeal, and fungal communities of dairy cows from 2 weeks to the middle of first lactation (>2 years) as well as rumen-associated communities from weaning (8 weeks) to first lactation. These communities were then correlated to animal growth and health. Although succession of specific operational taxonomic units (OTUs) was unique to each animal, beta-diversity decreased while alpha-diversity increased as animals aged. Calves exhibited similar microbial families and genera but different OTUs than adults, with a transition to an adult-like microbiota between weaning and 1 year of age. This suggests that alterations of the microbiota for improving downstream milk production may be most effective during, or immediately following, the weaning transition.


Assuntos
Trato Gastrointestinal/microbiologia , Microbiota , Animais , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Fezes/microbiologia , Feminino , Fungos/genética , Fungos/isolamento & purificação , Lactação , Masculino , Rúmen/microbiologia , Análise de Sequência de DNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...