Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 91(11): 1612-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23369636

RESUMO

The sorption of PO4-P, NH4-N and NO3-N to cacao shell and corn cob biochars produced at 300-350°C was quantified. The biochars were used; (i) as received (unwashed), (ii) after rinsing with Millipore water and (iii) following leaching with Millipore water. In addition to sorption, desorption of PO4-P from the unwashed biochars was quantified. There was no sorption of PO4-P to either washed or rinsed biochars, but following leaching, both biochars adsorbed PO4-P and distribution coefficients (Kd L kg(-1)) were very similar for both materials (10(1.1±0.5) for cacao shell biochar and 10(1.0±0.2) for corn cob biochar). The BET surface area and micropore volume increased 80% and 60% for the cacao shell and corn cob biochars following leaching. After 60 d, 1483±45 mg kg(-1) and 172±1 mg kg(-1) PO4-P was released from the cacao shell and corn cob biochars. NH4-N was sorbed by both unwashed biochars, albeit weakly with Kd values around 10(2) L kg(-1). We speculate that NH4-N could bind via an electrostatic exchange with other cationic species on the surface of the biochar. There was no significant release or sorption of NO3-N from or to either of the biochars.


Assuntos
Cacau/metabolismo , Carvão Vegetal/metabolismo , Fosfatos/metabolismo , Solo/química , Zea mays/metabolismo , Absorção , Compostos de Amônio/metabolismo , Técnicas de Química Analítica , Monitoramento Ambiental , Compostos Férricos/metabolismo , Fertilizantes/análise , Indonésia , Nitratos/metabolismo , Especificidade da Espécie , Zâmbia
2.
J Contam Hydrol ; 71(1-4): 47-66, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15145561

RESUMO

Enhanced understanding of light non-aqueous phase liquid (LNAPL) infiltration into heterogeneous porous media is important for the effective design of remediation strategies. We used a 2-D experimental facility that allows for visual observation of LNAPL contours in order to study LNAPL redistribution in a layered porous medium. The layers are situated in the unsaturated zone near the watertable and they are inclined to be able to observe the effect of discontinuities in capillary forces and relative permeabilities. Two experiments were performed. The first experiment consisted of LNAPL infiltration into a fine sand matrix with a coarse sand layer, and the second experiment consisted of a coarse sand matrix and a fine sand layer. The numerical multi-phase flow model STOMP was validated with regard to the experimental results. This model is able to adequately reproduce the experimental LNAPL contours. Numerical sensitivity analysis was also performed. The capillarity contrast between sands was found to be the main controlling factor determining the final LNAPL distribution.


Assuntos
Modelos Teóricos , Poluentes do Solo/análise , Poluentes da Água/análise , Poluição Ambiental/prevenção & controle , Filtração , Teste de Materiais , Porosidade , Movimentos da Água
3.
J Contam Hydrol ; 69(3-4): 173-94, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15028390

RESUMO

Numerical simulation tools have been used to study the dominating processes during transport of aromatic hydrocarbons in the unsaturated soil zone. Simulations were based on field observations at an experimental site located on a glacial delta plain with pronounced layered sedimentary structures. A numerical model for transport in the unsaturated zone, SWMS-3D, has been extended to incorporate coupled multispecies transport, microbial degradation following Monod kinetics and gas diffusive transport of oxygen and hydrocarbons. The flow field parameters were derived from previous work using nonreactive tracers. Breakthrough curves (BTC) from the hydrocarbon field experiment were used to determine sorption parameters and Monod kinetic parameters using a fitting procedure. The numerical simulations revealed that the assumption of homogeneous layers resulted in deviations from the field observations. The deviations were more pronounced with incorporation of reactive transport, compared with earlier work on nonreactive transport. To be able to model reasonable BTC, sorption had to be reduced compared to laboratory experiments. The initial biomass and the maximum utilisation rate could be adjusted to capture both the initial lag phase and the overall degradation rate. Nevertheless, local oxygen limitation is predicted by the model, which was not observed in the field experiment. Incorporation of evaporation and diffusive gas transport of the hydrocarbons did not significantly change the local oxygen demand. The main cause of the observed discrepancies between model and field are attributed to channelling as a result of small-scale heterogeneities such as biopores.


Assuntos
Modelos Teóricos , Poluentes do Solo/metabolismo , Movimentos da Água , Biodegradação Ambiental , Compostos Orgânicos/metabolismo
4.
Appl Microbiol Biotechnol ; 54(2): 255-61, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10968642

RESUMO

Bioremediation of soil contaminated by organic compounds can remove the contaminants to a large extent, but residual contamination levels may remain which are not or only slowly biodegraded. Residual levels often exceed existing clean-up guidelines and thereby limit the use of bioremediation in site clean-up. A method for estimating the expected residual levels would be a useful tool in the assessment of the feasibility of bioremediation. In this study, three soil types from a creosote-contaminated field site, which had been subjected to 6 months of bioremediation in laboratory column studies, were used to characterize the residual contamination levels and assess their availability for biodegradation. The soils covered a wide range of organic carbon levels and particle size distributions. Results from the biodegradation studies were compared with desorption rate measurements and selective extractability using butanol. Residual levels of polycyclic aromatic hydrocarbons after bioremediation were found to be strongly dependent on soil type. The presence of both soil organic matter and asphaltic compounds in the soil was found to be associated with higher residual levels. Good agreement was found between the biodegradable fraction and the rapidly desorbable fraction in two of the three soils studied. Butanol extraction was found to be a useful method for roughly estimating the biodegradable fraction in the soil samples. The results indicate that both desorption and selective extraction measurements could aid the assessment of the feasibility for bioremediation and identifying acceptable end-points.


Assuntos
Biodegradação Ambiental , Creosoto/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Butanóis/metabolismo , Cinética , Tamanho da Partícula , Solo
5.
Biodegradation ; 11(6): 391-9, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11587443

RESUMO

The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0-0.5 m), one from an organic rich layer (2-2.5 m) and one from the sandy aquifer (4.5-5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.


Assuntos
Biodegradação Ambiental , Creosoto/metabolismo , Compostos Policíclicos/metabolismo , Poluentes do Solo/metabolismo , Cromatografia Gasosa , Meios de Cultura , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA