Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38787137

RESUMO

Humans are chronically exposed to airborne microplastics (MPs) by inhalation. Various types of polymer particles have been detected in lung samples, which could pose a threat to human health. Inhalation toxicological studies are crucial for assessing the effects of airborne MPs and for exposure-reduction measures. This communication paper addresses important health concerns related to MPs, taking into consideration three levels of complexity, i.e., the particles themselves, the additives present in the plastics, and the exogenous substances adsorbed onto them. This approach aims to obtain a comprehensive toxicological profile of deposited MPs in the lungs, encompassing local and systemic effects. The physicochemical characteristics of MPs may play a pivotal role in lung toxicity. Although evidence suggests toxic effects of MPs in animal and cell models, no established causal link with pulmonary or systemic diseases in humans has been established. The transfer of MPs and associated chemicals from the lungs into the bloodstream and/or pulmonary circulation remains to be confirmed in humans. Understanding the toxicity of MPs requires a multidisciplinary investigation using a One Health approach.

2.
Mar Pollut Bull ; 203: 116495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759465

RESUMO

Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.


Assuntos
Bactérias , Microplásticos , Bactérias/genética , Bactérias/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/análise , Microbiota/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Monitoramento Ambiental , Água do Mar/microbiologia , Água do Mar/química
3.
Environ Sci Technol ; 58(10): 4792-4801, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427382

RESUMO

N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different pathways. The results showed that compared to a control system, the presence of formaldehyde enhances the formation of N-nitrosamines by a factor of 5-152 at pH 7, depending on the structure of the secondary amines. Acetaldehyde showed a slight enhancement effect on N-nitrosamine formation, while acetone and benzaldehyde did not promote nitrosation reactions. For neutral and basic conditions, the iminium ion was the dominant intermediate for N-nitrosamine formation, while carbinolamine became the major contributor under acidic conditions. Negative free energy changes (<-19 kcal mol-1) and relatively low activation energies (<18 kcal mol-1) of the reactions of secondary amines with N2O3, iminium ions with nitrite and carbinolamines with N2O3 from quantum chemical computations further support the proposed reaction pathways. This highlights the roles of the iminium ion and carbinolamine in the formation of N-nitrosamines during nitrosation in the presence of carbonyl compounds, especially in the context of industrial wastewater.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/química , Nitrosação , Aminas , Carcinógenos , Nitritos/química
4.
Environ Sci Process Impacts ; 26(2): 411-420, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38250811

RESUMO

Microplastics, especially aged microplastics can become vectors of metals from environment to organisms with potential negative effects on food chain. However, a few studies focused on the bioavailability of adsorbed metals and most studies related to aged microplastics used artificial method that cannot entirely reflect actual aging processes. In this study, virgin polystyrene was aged by ozone (PS-O3), solar simulator (PS-SS) and lake (PS-lake) to investigate adsorption of Cu by virgin, artificially and naturally aged microplastics and subsequent release in simulated gastrointestinal fluids (SGF). Characterization results show carbonyl was formed in PS-O3 and PS-SS, and the oxidation degree was PS-O3 > PS-SS > PS-lake. However, Cu adsorption capacity followed this order PS-lake (158 µg g-1) > PS-SS (117 µg g-1) > PS-O3 (65 µg g-1) > PS-virgin (0). PS-O3 showed highest Cu adsorption capacity at 0.5 h (71 µg g-1), but it dropped dramatically later (10 µg g-1, 120 h), because PS-O3 could break up and the adsorbed Cu released in solutions subsequently. For PS-lake, precipitation of metallic oxides contributes to the accumulation of Cu. The addition of dissolved organic matter (DOM) could occupy adsorption sites on PS and compete with Cu, but also can attach PS and adsorb Cu due to its rich functional groups. The simultaneous ingestion of microplastics with food suggested that adsorbed Cu is solubilized mostly from aged PS to SGF.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Microplásticos , Plásticos , Cobre , Adsorção , Poluentes Químicos da Água/análise
5.
JMIR Res Protoc ; 12: e51020, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831504

RESUMO

BACKGROUND: Semivolatile organic compounds (SVOCs) comprise several different chemical families used mainly as additives in many everyday products. SVOCs can be released into the air as aerosols and deposit on particulate matter during use by dispersion, evaporation, or abrasion. Phthalates are SVOCs of growing concern due to their endocrine-disrupting effects. Human data on the absorption, distribution, metabolism, and excretion (ADME) of these compounds upon inhalation are almost nonexistent. OBJECTIVE: The goal of this study is to develop a method for repeated inhalation exposures to SVOCs to characterize their ADME in humans. METHODS: We will use diethylhexyl phthalate (DEHP), a major indoor air pollutant, as a model SVOC in this novel protocol. The Swiss official Commission on Ethics in Human Research, Canton de Vaud, approved the study on October 14, 2020 (project-ID 2020-01095). Participants (n=10) will be repeatedly exposed (2 short daily exposures over 4 days) to isotope-labeled DEHP (DEHP-d4) to distinguish administered exposures from background exposures. DEHP-d4 aerosols will be generated with a small, portable, aerosol-generating device. Participants will inhale DEHP-d4-containing aerosols themselves with this device at home. Air concentrations of the airborne phthalates will be less than or equal to their occupational exposure limit (OEL). DEHP-d4 and its metabolites will be quantified in urine and blood before, during, and after exposure. RESULTS: Our developed device can generate DEHP-d4 aerosols with diameters of 2.5 µm or smaller and a mean DEHP-d4 mass of 1.4 (SD 0.2) µg per puff (n=6). As of May 2023, we have enrolled 5 participants. CONCLUSIONS: The portable device can be used to generate phthalate aerosols for repeated exposure in human studies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51020.

6.
Sci Total Environ ; 897: 165379, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423277

RESUMO

Dreissena polymorpha is a bivalve promising for biomonitoring in freshwater ecosystems thanks to its abundance and high filtration activity allowing rapid uptake of toxicants and identification of their negative effects. Nonetheless, we still lack knowledge on its molecular responses to stress under realistic scenario, e.g. multi-contamination. Carbamazepine (CBZ) and Hg are ubiquitous pollutants sharing molecular toxicity pathways, e.g. oxidative stress. A previous study in zebra mussels showed their co-exposure to cause more alterations than single exposures, but molecular toxicity pathways remained unidentified. D. polymorpha was exposed 24 h (T24) and 72 h (T72) to CBZ (6.1 ± 0.1 µg L-1), MeHg (430 ± 10 ng L-1) and the co-exposure (6.1 ± 0.1 µg L-1CBZ and 500 ± 10 ng L-1 MeHg) at concentrations representative of polluted areas (~10× EQS). RedOx system at the gene and enzyme level, the proteome and the metabolome were compared. The co-exposure resulted in 108 differential abundant proteins (DAPs), as well as 9 and 10 modulated metabolites at T24 and T72, respectively. The co-exposure specifically modulated DAPs and metabolites involved in neurotransmission, e.g. dopaminergic synapse and GABA. CBZ specifically modulated 46 DAPs involved in calcium signaling pathways and 7 amino acids at T24. MeHg specifically modulated 55 DAPs involved in the cytoskeleton remodeling and hypoxia-induced factor 1 pathway, without altering the metabolome. Single and co-exposures commonly modulated proteins and metabolites involved in energy and amino acid metabolisms, response to stress and development. Concomitantly, lipid peroxidation and antioxidant activities were unchanged, supporting that D. polymorpha tolerated experimental conditions. The co-exposure was confirmed to cause more alterations than single exposures. This was attributed to the combined toxicity of CBZ and MeHg. Altogether, this study underlined the necessity to better characterize molecular toxicity pathways of multi-contamination that are not predictable on responses to single exposures, to better anticipate adverse effects in biota and improve risk assessment.


Assuntos
Dreissena , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Masculino , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Bioacumulação , Ecossistema , Carbamazepina/toxicidade , Carbamazepina/metabolismo , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 450: 131094, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867906

RESUMO

N-nitrosamines are formed during different industrial processes and are of significant concern due to their carcinogenic and mutagenic properties. This study reports concentrations of N-nitrosamines in eight different industrial wastewater treatment plants in Switzerland and the variability of their abundance. Only four N-nitrosamines species, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodibutylamine (NDPA) and N-nitrosomorpholine (NMOR) were above the limit of quantification in this campaign. Remarkably high concentrations (i.e. up to 975 µg NDMA/L, 90.7 µg NDEA/L, 1.6 µg NDPA/L and 710 µg NMOR/L) of these N-nitrosamines were detected at seven of eight sites. These concentrations are two to five orders of magnitude higher than those typically detected in municipal wastewater effluents. These results suggest that industrial effluents may be a major source of N-nitrosamines. Although very high concentrations of N-nitrosamine have been detected in industrial discharges, various processes in surface water can partially mitigate their concentrations (e.g. photolysis, biodegradation and volatilization) and hence the risk to human health and aquatic ecosystems. Nevertheless, there is little information on long-term effects on aquatic organisms and therefore the discharge of N-nitrosamines to the environment should be avoided until the impact on ecosystems is assessed. During winter a less efficient mitigation of N-nitrosamines can be expected (lower biological activity, less sunlight) and therefore, emphasis should be put on this season in future risk assessment studies.


Assuntos
Ecossistema , Nitrosaminas , Humanos , Suíça , Dimetilnitrosamina , Dietilnitrosamina
8.
Environ Sci Technol ; 56(22): 15607-15616, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315940

RESUMO

Tire and road wear particles (TRWP) account for an important part of the polymer particles released into the environment. There are scientific knowledge gaps as to the potential bioaccessibility of chemicals associated with TRWP to aquatic organisms. This study investigated the solubilization and bioaccessibility of seven of the most widely used tire-associated organic chemicals and four of their degradation products from cryogenically milled tire tread (CMTT) into fish digestive fluids using an in vitro digestion model based on Oncorhynchus mykiss. Our results showed that 0.06-44.1% of the selected compounds were rapidly solubilized into simulated gastric and intestinal fluids within a typical gut transit time for fish (3 h in gastric and 24 h in intestinal fluids). The environmentally realistic scenario of coingestion of CMTT and fish prey was explored using ground Gammarus pulex. Coingestion caused compound-specific changes in solubilization, either increasing or decreasing the compounds' bioaccessibility in simulated gut fluids compared to CMTT alone. Our results emphasize that tire-associated compounds become accessible in a digestive milieu and should be studied further with respect to their bioaccumulation and toxicological effects upon passage of intestinal epithelial cells.


Assuntos
Anfípodes , Compostos Orgânicos , Animais , Cinética , Peixes
9.
Sci Total Environ ; 852: 158361, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058322

RESUMO

Oxidative stress can contribute to the development of diseases, and may originate from exposures to toxicants commonly found in air pollution and cigarette smoke such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Yet, associations between these exposures and oxidative stress biomarkers are poorly characterized. We report here novel associations between 14 exposure biomarkers of PAHs and VOCs, and two oxidative stress biomarkers; 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-isoprostaglandin F2α (8-isoprostane) in urine obtained from smokers participating in an ongoing clinical study (ESTxENDS, NCT03589989). We also assessed associations between six biomarkers of tobacco smoke exposure (metabolites of nicotine and tobacco-specific nitrosamines (TSNAs)) and both oxidative stress biomarkers. We then quantified the relative importance of each family of the 20 exposure biomarkers on oxidative stress. Participating smokers (153 men and 117 women, median age 44 years) had on average smoked 25 [2-62] years and smoked about 17 [5-40] cigarettes per day at the time of the study. Multiple linear regression results showed an association between 8-oxodG concentrations and the following metabolites in decreasing relative importance: PAHs (beta coefficient ß = 0.105, p-value <0.001, partial R2 = 0.15) > VOCs (ß = 0.028, p < 0.001, partial R2 = 0.09) > nicotine (ß = 0.226, p < 0.001, partial R2 = 0.08); and between 8-isoprostane concentrations and metabolites of PAHs (ß = 0.117, p < 0.001, partial R2 = 0.14) > VOCs (ß = 0.040, p < 0.001, partial R2 = 0.14) > TSNAs (ß = 0.202, p = 0.003, partial R2 = 0.09) > nicotine (ß = 0.266, p < 0.001, partial R2 = 0.08). Behavioral factors known to contribute to oxidative stress, including sleep quality, physical activity, and alcohol consumption, did not play a significant role. Exposures to PAHs and VOCs among smokers were significantly associated with oxidative stress.


Assuntos
Nitrosaminas , Hidrocarbonetos Policíclicos Aromáticos , Poluição por Fumaça de Tabaco , Compostos Orgânicos Voláteis , Adulto , Feminino , Humanos , Masculino , 8-Hidroxi-2'-Desoxiguanosina , Biomarcadores/urina , Nicotina/análise , Nitrosaminas/urina , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/análise , Fumantes , Poluição por Fumaça de Tabaco/análise , Compostos Orgânicos Voláteis/análise
10.
mSystems ; 7(3): e0030422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35695510

RESUMO

Nonmycorrhizal root-colonizing fungi are key determinants of plant growth, driving processes ranging from pathogenesis to stress alleviation. Evidence suggests that they might also facilitate host access to soil nutrients in a mycorrhiza-like manner, but the extent of their direct contribution to plant nutrition is unknown. To study how widespread such capacity is across root-colonizing fungi, we surveyed soils in nutrient-limiting habitats using plant baits to look for fungal community changes in response to nutrient conditions. We established a fungal culture collection and used Arabidopsis thaliana inoculation bioassays to assess the ability of fungi to facilitate host's growth in the presence of organic nutrients unavailable to plants. Plant baits captured a representation of fungal communities extant in natural habitats and showed that nutrient limitation has little influence on community assembly. Arabidopsis thaliana inoculated with 31 phylogenetically diverse fungi exhibited a consistent fungus-driven growth promotion when supplied with organic nutrients compared to untreated plants. However, direct phosphorus measurement and RNA-seq data did not support enhanced nutrient uptake but rather that growth effects may result from changes in the plant's immune response to colonization. The widespread and consistent host responses to fungal colonization suggest that distinct, locally adapted nonmycorrhizal fungi affect plant performance across habitats. IMPORTANCE Recent studies have shown that root-associated fungi that do not engage in classical mycorrhizal associations can facilitate the hosts' access to nutrients in a mycorrhiza-like manner. However, the generality of this capacity remains to be tested. Root-associated fungi are frequently deemed major determinants of plant diversity and performance, but in the vast majority of cases their ecological roles in nature remain unknown. Assessing how these plant symbionts affect plant productivity, diversity, and fitness is important to understanding how plant communities function. Recent years have seen important advances in the understanding of the main drivers of the diversity and structure of plant microbiomes, but a major challenge is still linking community properties with function. This study contributes to the understanding of the cryptic function of root-associated fungi by testing their ability to participate in a specific process: nutrient acquisition by plants.


Assuntos
Arabidopsis , Microbiota , Micorrizas , Raízes de Plantas , Simbiose , Micorrizas/fisiologia , Plantas , Nutrientes
11.
Environ Pollut ; 300: 118933, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122922

RESUMO

Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 µg L-1) and MeHg (280 ng L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ + MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.


Assuntos
Dreissena , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Carbamazepina/análise , Carbamazepina/toxicidade , Dreissena/metabolismo , Brânquias/metabolismo , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Poluentes Químicos da Água/análise
12.
Anal Chem ; 93(45): 14976-14984, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34735123

RESUMO

Plastic pollution has reached alarming levels in recent years. While macro- and microplastic pollution are attested and studied since the 1970s, much less is known about the associated nanoscopic fragments. Due to their ability to cross biological barriers and their extended surface area-to-volume ratio, nanoplastics (NPs) are currently considered as one of the major threats for aquatic and terrestrial environments. Therefore, analytical tools are urgently needed to detect and quantify NPs. In this study, a method exploiting the dependence of the fluorescence quantum yield of a probe, namely, 9-(2,2-dicyanovinyl)julolidine (DCVJ), toward its microenvironment was assessed to detect and quantify polystyrene nanoplastics (PSNs). In the presence of PSNs and after excitation at 450 nm, the single-emission band fluorescent molecular rotor (FMR) emission spectrum displays a second peak at 620 nm, which increases with the concentration of PSNs. In pure water, a limit of detection and quantification range of 475-563 µg·L-1 and 1.582-1.875 mg·L-1, respectively, were obtained for 49 nm diameter polystyrene beads (PSB49). The results associated with 100 nm diameter PSNs amount to 518 µg·L-1 and 1.725 mg·L-1. The robustness of the method toward different parameters, the complexity of the matrix, and the PSN characteristics was also assessed. Finally, the method was applied on biological samples. While PSB49 quantification was achieved using radish sprouts at concentrations up to 200 mg·L-1, it was more challenging when handling mussel tissues. This work presents the feasibility to quantify PSNs using DCVJ fluorescence. It paves the way to new perspectives in the challenging field of NPs.


Assuntos
Bivalves , Nanopartículas , Animais , Corantes Fluorescentes , Plásticos , Poliestirenos
13.
Environ Sci Technol ; 55(23): 15788-15796, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34807574

RESUMO

Tire and road wear particles (TRWP) have been shown to represent a large part of anthropogenic particles released into the environment. Nevertheless, the potential ecological risk of TRWP in the different environmental compartments and their potential toxic impacts on terrestrial and aquatic organisms remain largely underinvestigated. Several heavy metals compose TRWP, including Zn, which is used as a catalyst during the vulcanization process of rubber. This study investigated the solubilization potential of metals from cryogenically milled tire tread (CMTT) and TRWP in simulated gastric fluids (SFGASTRIC) and simulated intestinal fluids (SFINTESTINAL) designed to mimic rainbow trout (Oncorhynchus mykiss) gastrointestinal conditions. Our results indicate that the solubilization of heavy metals was greatly enhanced by gastrointestinal fluids compared to that by mineral water. After a 26 h in vitro digestion, 9.6 and 23.0% of total Zn content of CMTT and TRWP, respectively, were solubilized into the simulated gastrointestinal fluids. Coingestion of tire particles (performed with CMTT only) and surrogate prey items (Gammarus pulex) demonstrated that the animal organic matter reduced the amount of bioavailable Zn solubilized from CMTT. Contrastingly, in the coingestion scenario with vegetal organic matter (Lemna minor), high quantities of Zn were solubilized from L. minor and cumulated with Zn solubilized from CMTT.


Assuntos
Metais Pesados , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Digestão , Cinética , Borracha
14.
Environ Sci Process Impacts ; 23(10): 1566-1577, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34581385

RESUMO

The sorption of hydrophobic organic compounds (HOC) onto microplastics is relatively well reported in the literature, while their desorption remains poorly investigated, especially in biological fluids. The present study investigated the sorption and desorption of progesterone on polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics. The sorption experiments showed that the equilibrium was reached in a few hours for all plastics. A sorption efficiency of 357.1 µg g-1 was found for PE and PS, and 322.6 µg g-1 for PP. Sorption experiments indicated that adsorption would certainly happen via surface sorption and a potentially pore-filling mechanism. The desorption was carried out in Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF), whose formulations were more complex than similar models reported so far. It has been found that the desorption was higher in SIF as compared to SGF, due to micelle formation in SIF promoting the pollutant solubilization. The sorption of pepsin onto microplastics has also been revealed, suggesting a competition between pollutants and pepsin for sorption sites and a potent reduction in pollutant solubilization. This study indicates that the ingestion of microplastics could be considered as an additional route of exposure to pollutants and therefore emphasizes pollutant bioavailability for aquatic organisms.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Plásticos , Progesterona , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 779: 146589, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030263

RESUMO

Studies focused only on surface water may underestimate microplastic abundance in aquatic environments. This was the first survey to investigate the vertical (surface, intermediate, and bottom waters) distribution and composition of microplastics (MPs) in the water columns and surface sediments collected from an urban seagoing river in northern China. Microplastic abundance in the water columns ranged from 5.6 to 31.4 items∙L-1 and from 2141 to 10,035 items∙kg-1 dry weight (dw) in the surface sediments. Polyethylene dominated throughout the water columns to the surface sediments, in which low- and high-density polyethylene (LDPE and HDPE) were dominant in the water columns and surface sediments, respectively. The dominant shape of MPs was fibers/lines in both the water column and the surface sediment samples. Different from the estimations, the average abundance of MPs in the surface and intermediate waters was significantly lower (p < 0.01) than that in the bottom water, which may be due to the resuspension of small-sized MPs in the bottom water. As the MPs size increased, their vertical distributions in the water columns were more affected by the water depth. The results showed that MPs were detained in the water columns of river system, and the high concentrations of MPs in the bottom water could not be neglected.

16.
J Hazard Mater ; 404(Pt B): 124180, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059152

RESUMO

Microplastics pollution in river systems has generated great concern; however, few studies have focused on the contributions of multiple influencing factors to microplastics in river systems. In the current study, we utilized data on microplastics in surface sediments from the Haihe River, a seagoing river in northern China to establish a generalized additive model (GAM) for quantifying the effects of multiple factors on the distribution of microplastics. A high abundance of microplastics (4980 ± 2462 items∙kg-1 dry weight) was found. Small particles (< 1000 µm) accounted for a dominant proportion (44.8-61.0%). Polyethylene (PE) was the chief component with an averaged fraction of 49.3%, in which low- and high-density polyethylene contributed 90.7% and 9.3% of the PE, respectively. Microplastics abundance was positively correlated with sediment TOC and the silt fraction (p < 0.05) but negatively correlated with the sand fraction (p < 0.05). The GAM could explain approximate 60% of the total microplastics abundance, and dam (28.5%), sediment TOC (22.9%), and sewage effluent (17.6%) were the main contributors to total variations in microplastics abundance. Local sewage effluent acted as an important point source of microplastics discharge, and the dam on the river greatly affected the deposition and accumulation of microplastics.

17.
Sci Total Environ ; 754: 142175, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920409

RESUMO

The contamination of water resource and food chain by persistent organic pollutants (POPs) constitutes a major environmental and human health concern worldwide. The aim of this study was to investigate the levels of POPs in irrigation water, soil and in Amaranthus viridis (A. viridis) from different gardening sites in Kinshasa to evaluate the potential environmental and human health risks. A survey study for the use of pesticides and fertilizers was carried out with 740 market gardeners. The levels of POPs (including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs)) were analyzed in irrigation water and 144 vegetable samples collected from different gardening sites. The assessment of potential human health risk was estimated by calculating daily intake and toxic equivalency to quantify the carcinogenicity. The results show highest PAH levels in A. viridis from all studied sites. The concentrations of the sum of seven PCBs (Σ7PCBS) congeners in analyzed plants ranged between 15.89 and 401.36 ng g-1. The distributions of OCPs in both water and A. viridis were congener specific, chlorpyrifos-ethyl and p,p'-DDE were predominantly detected. Among PBDEs, only BDE47 was quantified with noticeable concentration in A. viridis, while no PBDEs were detected in irrigation water. Higher estimated daily intake values indicate that consuming leafy vegetables might associate with increased human health risks. However, calculated incremental lifetime cancer risk values indicates no potential carcinogenic risk for the local population. The results of this study provide important information on A. viridis contamination by POPs and strongly recommend implementing the appropriate measures to control the use of chemicals used in studied gardening areas. Thus in Kinshasa, urban agriculture control programs for POPs and fertilizers is very important in order to protect the public health through direct and dietary exposure pathways.


Assuntos
Amaranthus , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , República Democrática do Congo , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Humanos , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Medição de Risco
18.
J Environ Manage ; 279: 111782, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307316

RESUMO

In the Mekong delta, inland-based shrimp breeding requires significant inflow of high-quality freshwater. In turn, discharge of substantial loads of poor-quality effluents negatively impacts adjacent water bodies and favors disease outbreaks. This project describes the implementation of a laboratory-based continuous closed recirculation aquaculture system composed of a constructed wetland (CW) with horizontal subsurface flow as a water treatment filter for mesohaline conditions, functioning under high loading rate (HLR = 1.54 m/d with HRT = 1.31 h). This CW was equipped of successive compartment dedicated to the successive elimination of the contaminants of interests. CW performance was measured over a complete growth cycle of the White-leg shrimps (Litopenaeus vannamei). Results showed that the designed system was pertinent, improving water quality of the shrimp culture substantially. Complete removal of nitrite was attained, with a concomitant reduction of respectively 78% and 76% of nitrate and COD. Bacteria enumeration tests showed that Vibrio sp. cells were fully removed, and that a 3 Log reduction was reached in total aerobic bacteria.


Assuntos
Purificação da Água , Áreas Alagadas , Animais , Aquicultura , Fazendas , Nitrogênio/análise , Qualidade da Água
19.
Sci Total Environ ; 745: 141131, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738696

RESUMO

The distribution, partitioning behavior and risk assessment of phthalate esters (PAEs) in the surface sediment-pore water system of the Haihe River were investigated. The total cumulative concentrations of 21 PAE species (Σ21PAEs) in the surface sediment ranged from 45.9 to 1474.1 ng·g-1 dry weight (dw) and were from 17.9 to 2628.8 ng·mL-1 in the pore water. Di (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP) were the dominant components, and their sum accounted, on average, for 88.4% and 72.0% of Σ21PAEs in the surface sediment and pore water, respectively. The spatial distributions of Σ21PAEs in the surface sediment and pore water indicated that large amounts of the consumed products contained plasticizers in the urban and nearshore areas and increased the discharge of PAEs into the Haihe River. The river dam also affected PAEs distributions. The organic carbon normalized partitioning coefficient (logKOC) followed a sequence as dry season (2.47 ± 0.35 mL·g-1) > wet season (2.02 ± 0.45 mL·g-1) > normal season (1.98 ± 0.42 mL·g-1). The risk quotient (RQ) method was employed to assess the potential ecological risk from specific species. High ecological risks of DEHP to the sensitive algae, crustacean, and fish species along with high ecological risks of DIBP to sensitive fish species were found in the surface sediment and pore water for all sampling seasons. In addition, DBP in the surface sediment and pore water exhibited moderate and high ecological risks to sensitive aquatic species. The highest RQ values for PAEs were found in the surface sediment and pore water in suburban and urban areas, respectively, and indicated that anthropogenic activities may cause severe river pollution and high risk to the local aquatic ecosystem. CAPSULE: High levels and ecological risks from PAEs were found in the urban river, and the partitioning behaviors of PAEs between the surface sediment and pore water were not significantly affected by their hydrophobicity, especially for species with low KOW.

20.
Bioresour Technol ; 314: 123754, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32650264

RESUMO

In this study, mixed culture (microalgae:activated sludge) of a photobioreactor (PBR) were investigated at different inoculation ratios (1:0, 9:1, 3:1, 1:1, 0:1 wt/wt). This work was not only to determine the optimal ratio for pollutant remediation and biomass production but also to explore the role of microorganisms in the co-culture system. The results showed high total biomass concentrations were obtained from 1:0 and 3:1 ratio being values of 1.06, 1.12 g L-1, respectively. Microalgae played a dominant role in nitrogen removal via biological assimilation while activated sludge was responsible for improving COD removal. Compared with the single culture of microalgae, the symbiosis between microalgae and bacteria occurred at 3:1 and 1:1 ratio facilitated a higher COD removal by 37.5-45.7 %. In general, combined assessment based on treatment performance and biomass productivity facilitated to select an optimal ratio of 3:1 for the operation of the co-culture PBR.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Técnicas de Cocultura , Nitrogênio/análise , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA