Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 379(2-3): 133-50, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17250876

RESUMO

Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 microg/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwater has <5 microg/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO(3)) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO(3), and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these experiments show that oxidized sediments have a substantial but limited capacity for removal of As from groundwater.


Assuntos
Arsênio/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Adsorção , Arsênio/análise , Bangladesh , Bicarbonatos/análise , Bicarbonatos/química , Carbono/análise , Sedimentos Geológicos/análise , Concentração de Íons de Hidrogênio , Oxirredução , Fósforo/análise , Fósforo/química , Silício/análise , Silício/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise
2.
Environ Sci Technol ; 37(6): 1093-9, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12680660

RESUMO

Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 microM SO4(-2) x day(-1), respectively. The concentration of sulfate in the core of the leachate plume was well below 20 microM and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (approximately 100 microM) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide in this zone. This suggests that the current and past distributions of sulfate-reducing activity are similar and that the supply of sulfate has been sustained at these sites.


Assuntos
Bactérias Anaeróbias/fisiologia , Eliminação de Resíduos , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/fisiologia , Poluentes da Água/metabolismo , Abastecimento de Água , Permeabilidade , Porosidade , Solo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...