Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Patterns (N Y) ; 4(5): 100733, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37223265

RESUMO

Understanding a drug candidate's mechanism of action is crucial for its further development. However, kinetic schemes are often complex and multi-parametric, especially for proteins in oligomerization equilibria. Here, we demonstrate the use of particle swarm optimization (PSO) as a method to select between different sets of parameters that are too far apart in the parameter space to be found by conventional approaches. PSO is based upon the swarming of birds: each bird in the flock assesses multiple landing spots while at the same time sharing that information with its neighbors. We applied this approach to the kinetics of HSD17ß13 enzyme inhibitors, which displayed unusually large thermal shifts. Thermal shift data for HSD17ß13 indicated that the inhibitor shifted the oligomerization equilibrium toward the dimeric state. Validation of the PSO approach was provided by experimental mass photometry data. These results encourage further exploration of multi-parameter optimization algorithms as tools in drug discovery.

2.
Magn Reson (Gott) ; 4(1): 1-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269110

RESUMO

To characterize structure and molecular order in the nanometre range, distances between electron spins and their distributions can be measured via dipolar spin-spin interactions by different pulsed electron paramagnetic resonance experiments. Here, for the single-frequency technique for refocusing dipolar couplings (SIFTER), the buildup of dipolar modulation signal and intermolecular contributions is analysed for a uniform random distribution of monoradicals and biradicals in frozen glassy solvent by using the product operator formalism for electron spin S=1/2. A dipolar oscillation artefact appearing at both ends of the SIFTER time trace is predicted, which originates from the weak coherence transfer between biradicals. The relative intensity of this artefact is predicted to be temperature independent but to increase with the spin concentration in the sample. Different compositions of the intermolecular background are predicted in the case of biradicals and in the case of monoradicals. Our theoretical account suggests that the appropriate procedure of extracting the intramolecular dipolar contribution (form factor) requires fitting and subtracting the unmodulated part, followed by division by an intermolecular background function that is different in shape. This scheme differs from the previously used heuristic background division approach. We compare our theoretical derivations to experimental SIFTER traces for nitroxide and trityl monoradicals and biradicals. Our analysis demonstrates a good qualitative match with the proposed theoretical description. The resulting perspectives for a quantitative analysis of SIFTER data are discussed.

3.
Nat Commun ; 13(1): 4546, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927276

RESUMO

Pin1 is a two-domain cell regulator that isomerizes peptidyl-prolines. The catalytic domain (PPIase) and the other ligand-binding domain (WW) sample extended and compact conformations. Ligand binding changes the equilibrium of the interdomain conformations, but the conformational changes that lead to the altered domain sampling were unknown. Prior evidence has supported an interdomain allosteric mechanism. We recently introduced a magnetic resonance-based protocol that allowed us to determine the coupling of intra- and interdomain structural sampling in apo Pin1. Here, we describe ligand-specific conformational changes that occur upon binding of pCDC25c and FFpSPR. pCDC25c binding doubles the population of the extended states compared to the virtually identical populations of the apo and FFpSPR-bound forms. pCDC25c binding to the WW domain triggers conformational changes to propagate via the interdomain interface to the catalytic site, while FFpSPR binding displaces a helix in the PPIase that leads to repositioning of the PPIase catalytic loop.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Ligantes , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Ligação Proteica , Domínios Proteicos
4.
J Am Chem Soc ; 143(39): 16055-16067, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579531

RESUMO

Proteins composed of multiple domains allow for structural heterogeneity and interdomain dynamics that may be vital for function. Intradomain structures and dynamics can influence interdomain conformations and vice versa. However, no established structure determination method is currently available that can probe the coupling of these motions. The protein Pin1 contains separate regulatory and catalytic domains that sample "extended" and "compact" states, and ligand binding changes this equilibrium. Ligand binding and interdomain distance have been shown to impact the activity of Pin1, suggesting interdomain allostery. In order to characterize the conformational equilibrium of Pin1, we describe a novel method to model the coupling between intra- and interdomain dynamics at atomic resolution using multistate ensembles. The method uses time-averaged nuclear magnetic resonance (NMR) restraints and double electron-electron resonance (DEER) data that resolve distance distributions. While the intradomain calculation is primarily driven by exact nuclear Overhauser enhancements (eNOEs), J couplings, and residual dipolar couplings (RDCs), the relative domain distribution is driven by paramagnetic relaxation enhancement (PREs), RDCs, interdomain NOEs, and DEER. Our data support a 70:30 population of the compact and extended states in apo Pin1. A multistate ensemble describes these conformations simultaneously, with distinct conformational differences located in the interdomain interface stabilizing the compact or extended states. We also describe correlated conformations between the catalytic site and interdomain interface that may explain allostery driven by interdomain contact.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptidilprolil Isomerase de Interação com NIMA/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Conformação Proteica
5.
J Phys Chem Lett ; 10(21): 6942-6947, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31633356

RESUMO

We show that oligo(phenyleneethynylene)s (oligoPEs) are ideal spacers for calibrating dye pairs used for Förster resonance energy transfer (FRET). Ensemble FRET measurements on linear and kinked diads with such spacers show the expected distance and orientation dependence of FRET. Measured FRET efficiencies match excellently with those predicted using a harmonic segmented chain model, which was validated by end-to-end distance distributions obtained from pulsed electron paramagnetic resonance measurements on spin-labeled oligoPEs with comparable label distances.

6.
J Magn Reson ; 308: 106560, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377151

RESUMO

Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.

7.
Phys Chem Chem Phys ; 19(24): 15754-15765, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28569894

RESUMO

Double electron electron resonance (DEER) enables determination of distance distributions in the nanometre range. A recently introduced 5-pulse version of this experiment prolongs the electron spin coherence lifetime and thus provides improved sensitivity or an extended distance range, but suffers from artefacts due to partial excitation and excitation band overlap. In particular, the partial excitation artefact is hard to eliminate experimentally at frequencies where DEER is most sensitive or on spectrometers that provide only monochromatic pulses. Here, a data post-processing method is introduced that removes the partial excitation artefact without relying on previous knowledge of its amplitude and without sensitivity loss. The method is based on acquisition of two traces with shifted positions of the artefact and computation of the artefact shape from the difference of the two traces. Artefact removal was successfully tested both on simulated and experimental data. It was found to be stable for a variety of distance distributions and down to low signal-to-noise ratios in the presence of moderate background decay. The artefact correction method also performs well in the regime of rather strong partial excitation artefacts that is usually encountered with rectangular monochromatic pump pulses on widely available commercial spectrometers.

8.
Phys Chem Chem Phys ; 19(24): 15766-15779, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28590496

RESUMO

A 5-pulse version of the Double Electron Electron Resonance (DEER) experiment with Carr-Purcell delays and an additional pump pulse has been shown to significantly extend the experimentally accessible distance range in cases where nuclear spin diffusion dominates electron spin phase memory loss [Borbat et al., J. Phys. Chem. Lett., 2013, 4, 170]. We show that the sequence also prolongs coherence decay for spin labels in or near lipid bilayers, where this decay is mono-exponential. Compared to 4-pulse DEER, 5-pulse DEER suffers from additional artefacts that stem from pulse imperfection and excitation band overlap. Only some of these artefacts can be suppressed by phase cycling and the remaining ones have hindered widespread utilization of the method. Here, we report previously unknown additional artefact contributions stemming from overlap between the excitation bands of the microwave pulses that introduce additional dipolar evolution pathways. Experimental conditions are analyzed in detail that suppress these as well as the already known artefacts. Such suppression results in data that contain at most the partial excitation artefact, which can be deliberately shifted in time by a change in pulse timing without affecting the wanted contribution.

9.
Inorg Chem ; 55(22): 11944-11953, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27934316

RESUMO

Quinonoid bridges are well-suited for generating dinuclear assemblies that might display various bistable properties. In this contribution we present two diiron(II) complexes where the iron(II) centers are either bridged by the doubly deprotonated form of a symmetrically substituted quinonoid bridge, 2,5-bis[4-(isopropyl)anilino]-1,4-benzoquinone (H2L2') with a [O,N,O,N] donor set, or with the doubly deprotonated form of an unsymmetrically substituted quinonoid bridge, 2-[4-(isopropyl)anilino]-5-hydroxy-1,4-benzoquinone (H2L5') with a [O,O,O,N] donor set. Both complexes display temperature-induced spin crossover (SCO). The nature of the SCO is strongly dependent on the bridging ligand, with only the complex with the [O,O,O,N] donor set displaying a prominent hysteresis loop of about 55 K. Importantly, only the latter complex also shows a pronounced light-induced spin state change. Furthermore, both complexes can be oxidized to the mixed-valent iron(II)-iron(III) form, and the nature of the bridge determines the Robin and Day classification of these forms. Both complexes have been probed by a battery of electrochemical, spectroscopic, and magnetic methods, and this combined approach is used to shed light on the electronic structures of the complexes and on bistability. The results presented here thus show the potential of using the relatively new class of unsymmetrically substituted bridging quinonoid ligands for generating intriguing bistable properties and for performing site-specific magnetic switching.

10.
Chemistry ; 22(39): 13884-13893, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27549247

RESUMO

Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis.

11.
Dalton Trans ; 45(20): 8394-403, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27109712

RESUMO

The generation of molecular platforms, the properties of which can be influenced by a variety of external perturbations, is an important goal in the field of functional molecular materials. We present here the synthesis of a new quinonoid ligand platform containing an [O,O,O,N] donor set. The ligand is derived from a chloranilic acid core by using the [NR] (nitrogen atom with a substituent R) for [O] isoelectronic substitution. Mononuclear Fe(II) and Co(II) complexes have been synthesized with this new ligand. Results obtained from single crystal X-ray crystallography, NMR spectroscopy, (spectro)electrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to elucidate the electronic and geometric structures of the complexes. Furthermore, we show here that the spin state of the Fe(II) complex can be influenced by temperature, pressure and light and the Co(II) complex displays redox-induced spin-state switching. Bistability is observed in the solid-state as well as in solution for the Fe(II) complex. The new ligand presented here, owing to the [NR] group present in it, will likely have more adaptability while investigating switching phenomena compared to its [O,O,O,O] analogues. Thus, such classes of ligands as well as the results obtained on the reversible changes in physical properties of the metal complexes are likely to contribute to the generation of multifunctional molecular materials.

12.
Nat Commun ; 7: 10467, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883902

RESUMO

Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...