Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; 15(2): 232-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180084

RESUMO

After decades of research and development, haptic feedback is increasingly appearing in consumer products. While the prevalence of haptic feedback is increasing, the integration rarely offers increased fidelity to previous generations. We argue this is because of the tremendous complexity of successful haptic design engineering, but critically, also because of information saturation. With novel cutaneous feedback technologies and companies emerging almost daily, the multi-disciplinary nature of haptics and the marketing-driven terminology used to stand out in a crowded market makes it challenging to select and integrate actuators correctly. To manage this complexity and facilitate the interdisciplinary exchange of user requirements and material affordances, we introduce a novel classification criterion for haptic actuators focused on the bandwidth and fidelity of potential effects. We introduce vocabulary for describing the precise experience the actuators and corresponding systems should deliver. Lastly, we summarize currently commercially available cutaneous-based haptic technology. In the nearby future, the same criterion and language can also prove valuable for steering technology development of new and improved actuators and enabling novice and experienced practitioners to understand and integrate cutaneous feedback in their products.


Assuntos
Tecnologia Háptica , Interface Usuário-Computador , Desenho de Equipamento , Retroalimentação , Humanos , Pele
2.
IEEE Trans Haptics ; 15(2): 292-303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34826298

RESUMO

Advancements in user interface technologies and demands of design engineering led to increasing implementation of large and mostly flat interactive surfaces in automotive. Recent discussions in the context of in-vehicle usage of touchscreens advocate for the use of haptic feedback to restore the explore- and feel-qualities typically experienced in traditional physical button interfaces that contribute to intuitive, eyes-free, and tactually rich interactions. Haptic technologies that include a friction modulation approach seem especially promising to convey a high-quality feeling. This research reports an experience-oriented evaluation of an electrostatic friction haptic display in an in-vehicle direct touch interaction context. The evaluation was based on an automotive multitask setting (primary driving-task and secondary target-selection-task) with a 2 × 2 feedback modality design (factors haptic/audio with levels absent/present). The objective variables (response time, errors, and performance on the primary task) did not differ between feedback modalities. Any additional feedback to a visual baseline enhanced the user experience, with the multimodal feedback being preferred by most participants. Surface haptics was perceived as a novel yet unexpected type of haptic feedback. We discuss the implications for the haptic design of programmable friction displays and provide an initial set of guidelines for this innovative technology.


Assuntos
Condução de Veículo , Interface Usuário-Computador , Retroalimentação , Fricção , Tecnologia Háptica , Humanos
3.
Front Psychol ; 12: 646986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290643

RESUMO

Novel tangible user interface technologies facilitate current trends toward seamless user interfaces. They enable the design of yet unseen interfaces and thus the creation of a new kind of haptic language. In order to use the benefits of a touch-and-feel design for a positive user experience, carefully designed haptic feedback plays an important role by providing aesthetically pleasing and sustainable product features. Haptic feedback may exceed mere acquiring of buttons and input-confirmation but enable orientation and even identification of functionality governed by the haptic impression. We employed the aesthetic association principle as a deeply grounded psychological mechanism that assists effective linkage between haptic form factors and associated functional attributes. In order to illustrate this powerful principle, we analyzed the specific associations between certain main haptic surface qualities and associated functional aspects. In a series of three subsequent studies (Pre-Study 1: perception, Pre-Study 2: similarity, and Main Study: association), we explored paradigmatic associations of that kind to develop guidelines which forms are distinct to be used in interfaces. We show how forms are implicitly categorized into functional qualities (on/off, more-less, selection), using a multidimensional scaling procedure and explore explicit form-functionality associations, using a think-aloud method in the context of an automotive interface. For a series of forms, we revealed clear associative relations to specific functions. We will discuss the general value and opportunities of an association-based approach to user experience in order to create intuitive user interfaces. We will also develop ideas for specific areas of applications.

4.
Front Psychol ; 10: 1470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402879

RESUMO

Driving a car is a highly visual task. Despite the trend towards increased driver assistance and autonomous vehicles, drivers still need to interact with the car for both driving and non-driving relevant tasks, at times simultaneously. The often-resulting high cognitive load is a safety issue, which can be addressed by providing the driver with alternative feedback modalities, such as haptics. Recent trends in the automotive industry are moving towards the seamless integration of control elements through touch-sensitive surfaces. Psychological knowledge on optimally utilizing haptic technologies remains limited. The literature on automotive haptic feedback consists mainly of singular findings without putting them into a broader user context with respect to haptic design of interfaces. Moreover, haptic feedback has primarily been limited to the confirmation of control actions rather than the searching or finding of control elements, the latter of which becomes particularly important considering the current trends. This paper presents an integrated framework on haptic processing in automotive user interfaces and provides guidelines for haptic design of user interfaces in car interiors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA