Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(3): 593-604, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38063129

RESUMO

The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system. Despite the availability of well-established light and advanced electron microscopy techniques in this system, a correlative approach integrating both methods with near-native ultrastructural preservation is currently lacking. This is most likely due to the low ability of D. discoideum to adhere to surfaces, which results in cell loss even after fixation. To address this problem, we improved the adhesion of cells and developed a straightforward and convenient workflow for 3D-correlative light and electron microscopy. This approach includes high-pressure freezing, which is an excellent technique for preserving membranes. Thus, our method allows to monitor the ultrastructural aspects of vacuole escape which is of central importance for the survival and dissemination of bacterial pathogens.


Assuntos
Dictyostelium , Mycobacterium marinum , Mycobacterium , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Congelamento , Microscopia Eletrônica
2.
J Biol Chem ; 299(11): 105282, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742923

RESUMO

The intracellular domains of connexins are essential for the assembly of gap junctions. For connexin 36 (Cx36), the major neuronal connexin, it has been shown that a dysfunctional PDZ-binding motif interferes with electrical synapse formation. However, it is still unknown how this motif coordinates the transport of Cx36. In the present study, we characterize a phenotype of Cx36 mutants that lack a functional PDZ-binding motif using HEK293T cells as an expression system. We provide evidence that an intact PDZ-binding motif is critical for proper endoplasmic reticulum (ER) export of Cx36. Removing the PDZ-binding motif of Cx36 results in ER retention and the formation of multimembrane vesicles containing gap junction-like connexin aggregates. Using a combination of site-directed mutagenesis and electron micrographs, we reveal that these vesicles consist of Cx36 channels that docked prematurely in the ER. Our data suggest a model in which ER-retained Cx36 channels reshape the ER membrane into concentric whorls that are released into the cytoplasm.


Assuntos
Conexinas , Retículo Endoplasmático , Junções Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Junções Comunicantes/metabolismo , Células HEK293 , Domínios Proteicos , Motivos de Aminoácidos , Sinapses Elétricas/fisiologia , Mutação , Transporte Proteico/genética , Vesículas Sinápticas/patologia , Vesículas Sinápticas/ultraestrutura , Microscopia Eletrônica de Varredura , Proteína delta-2 de Junções Comunicantes
3.
mBio ; 14(5): e0094323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37676004

RESUMO

IMPORTANCE: Tuberculosis still remains a global burden and is one of the top infectious diseases from a single pathogen. Mycobacterium tuberculosis, the causative agent, has perfected many ways to replicate and persist within its host. While mycobacteria induce vacuole damage to evade the toxic environment and eventually escape into the cytosol, the host recruits repair machineries to restore the MCV membrane. However, how lipids are delivered for membrane repair is poorly understood. Using advanced fluorescence imaging and volumetric correlative approaches, we demonstrate that this involves the recruitment of the endoplasmic reticulum (ER)-Golgi lipid transfer protein OSBP8 in the Dictyostelium discoideum/Mycobacterium marinum system. Strikingly, depletion of OSBP8 affects lysosomal function accelerating mycobacterial growth. This indicates that an ER-dependent repair pathway constitutes a host defense mechanism against intracellular pathogens such as M. tuberculosis.


Assuntos
Dictyostelium , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculose , Humanos , Vacúolos/metabolismo , Dictyostelium/microbiologia , Retículo Endoplasmático , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo
4.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189830

RESUMO

Within a cell, vesicles play a crucial role in the transport of membrane material and proteins to a given target membrane, and thus regulate a variety of cellular functions. Vesicular transport occurs by means of, among others, endocytosis, where cargoes are taken up by the cell and are processed further upon vesicular trafficking, i.e. transported back to the plasma membrane via recycling endosomes or the degraded by fusion of the vesicles with lysosomes. During evolution, a variety of vesicles with individual functions arose, with some of them building up highly specialised subcellular compartments. In this study, we have analysed the biosynthesis of a new vesicular compartment present in the valve cells of Drosophila melanogaster. We show that the compartment is formed by invaginations of the plasma membrane and grows via re-routing of the recycling endosomal pathway. This is achieved by inactivation of other membrane-consuming pathways and a plasma membrane-like molecular signature of the compartment in these highly specialised heart cells.


Assuntos
Drosophila melanogaster , Endossomos , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Endossomos/metabolismo , Valvas Cardíacas/metabolismo , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
5.
Histochem Cell Biol ; 158(2): 127-136, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35764846

RESUMO

The nanometer spatial resolution of electron microscopy imaging remains an advantage over light microscopy, but the restricted field of view that can be inspected and the inability to visualize dynamic cellular events are definitely drawbacks of standard transmission electron microscopy (TEM). Several methods have been developed to overcome these limitations, mainly by correlating the light microscopical image to the electron microscope with correlative light and electron microscopy (CLEM) techniques. Since there is more than one method to obtain the region of interest (ROI), the workflow must be adjusted according to the research question and biological material addressed. Here, we describe in detail the development of a three-dimensional CLEM workflow for mouse skin tissue exposed to an inflammation stimulus and imaged by intravital microscopy (IVM) before fixation. Our aim is to relocate a distinct vessel in the electron microscope, addressing a complex biological question: how do cells interact with each other and the surrounding environment at the ultrastructural level? Retracing the area over several preparation steps did not involve any specific automated instruments but was entirely led by anatomical and artificially introduced landmarks, including blood vessel architecture and carbon-coated grids. Successful retrieval of the ROI by electron microscopy depended on particularly high precision during sample manipulation and extensive documentation. Further modification of the TEM sample preparation protocol for mouse skin tissue even rendered the specimen suitable for serial block-face scanning electron microscopy (SBF-SEM).


Assuntos
Imageamento Tridimensional , Pele , Animais , Imageamento Tridimensional/métodos , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
6.
J Invest Dermatol ; 142(10): 2724-2732.e3, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35367475

RESUMO

Platelets preserve vascular integrity during immune complex‒mediated skin inflammation by preventing neutrophil-provoked hemorrhage. However, the single-cell dynamics of this hemostatic process have never been studied in real-time. To monitor the onset of thrombocytopenia-associated hemorrhages and analyze platelet recruitment, we developed a confocal microscopy‒based video-imaging platform for the dorsal skinfold chamber in living mice. For ultrastructural analysis of recruited platelets, we correlated our imaging approach with serial block-face scanning electron microscopy. We found that bleeding events were transient and occurred preferentially at vascular sites, which were repeatedly penetrated by extravasating neutrophils. Hemorrhage only resumed when previously affected sites were again breached by yet another neutrophil. In non-thrombocytopenic mice, we observed that neutrophil extravasation provoked the recruitment of single platelets to the vessel wall, which required platelet immunoreceptor tyrosine-based activation motif receptors glycoprotein VI and C-type-lectin-like receptor 2. Recruited platelets were found to spread across the endothelial barrier and some even across the basement membrane while retaining their granules. Thus, by visualizing the spatiotemporal dynamics of thrombocytopenia-associated bleeding and platelet recruitment on a single-cell level and in real-time, we provide further insights into how platelets preserve vascular integrity during immune complex‒mediated skin inflammation.


Assuntos
Hemostáticos , Trombocitopenia , Animais , Complexo Antígeno-Anticorpo , Plaquetas , Hemorragia , Inflamação , Lectinas Tipo C , Camundongos
7.
Am J Physiol Cell Physiol ; 318(6): C1107-C1122, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267718

RESUMO

Tetraspanin-2A (Tsp2A) is an integral membrane protein of smooth septate junctions in Drosophila melanogaster. To elucidate its structural and functional roles in Malpighian tubules, we used the c42-GAL4/UAS system to selectively knock down Tsp2A in principal cells of the tubule. Tsp2A localizes to smooth septate junctions (sSJ) in Malpighian tubules in a complex shared with partner proteins Snakeskin (Ssk), Mesh, and Discs large (Dlg). Knockdown of Tsp2A led to the intracellular retention of Tsp2A, Ssk, Mesh, and Dlg, gaps and widening spaces in remaining sSJ, and tumorous and cystic tubules. Elevated protein levels together with diminished V-type H+-ATPase activity in Tsp2A knockdown tubules are consistent with cell proliferation and reduced transport activity. Indeed, Malpighian tubules isolated from Tsp2A knockdown flies failed to secrete fluid in vitro. The absence of significant transepithelial voltages and resistances manifests an extremely leaky epithelium that allows secreted solutes and water to leak back to the peritubular side. The tubular failure to excrete fluid leads to extracellular volume expansion in the fly and to death within the first week of adult life. Expression of the c42-GAL4 driver begins in Malpighian tubules in the late embryo and progresses upstream to distal tubules in third instar larvae, which can explain why larvae survive Tsp2A knockdown and adults do not. Uncontrolled cell proliferation upon Tsp2A knockdown confirms the role of Tsp2A as tumor suppressor in addition to its role in sSJ structure and transepithelial transport.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Túbulos de Malpighi/metabolismo , Tetraspaninas/metabolismo , Junções Íntimas/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Impedância Elétrica , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Larva/ultraestrutura , Túbulos de Malpighi/embriologia , Túbulos de Malpighi/ultraestrutura , Via Secretória , Transdução de Sinais , Tetraspaninas/genética , Junções Íntimas/genética , Junções Íntimas/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...