Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951246

RESUMO

An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species Caenorhabditis briggsae (Cbr) and Caenorhabditis elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13 bp MEX and 30 bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with the conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis , Animais , Camundongos , Caenorhabditis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mecanismo Genético de Compensação de Dose
2.
Proc Natl Acad Sci U S A ; 119(37): e2211642119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067293

RESUMO

Organisms that count X-chromosome number to determine sex utilize dosage compensation mechanisms to balance X-gene expression between sexes. Typically, a regulatory complex is recruited to X chromosomes of one sex to modulate gene expression. A major challenge is to determine the mechanisms that target regulatory complexes specifically to X. Here, we identify critical X-sequence motifs in Caenorhabditis elegans that act synergistically in hermaphrodites to direct X-specific recruitment of the dosage compensation complex (DCC), a condensin complex. We find two DNA motifs that collaborate with a previously defined 12-bp motif called MEX (motif enriched on X) to mediate binding: MEX II, a 26-bp X-enriched motif and Motif C, a 9-bp motif that lacks X enrichment. Inserting both MEX and MEX II into a new location on X creates a DCC binding site equivalent to an endogenous recruitment site, but inserting only MEX or MEX II alone does not. Moreover, mutating MEX, MEX II, or Motif C in endogenous recruitment sites with multiple different motifs dramatically reduces DCC binding in vivo to nearly the same extent as mutating all motifs. Changing the orientation or spacing of motifs also reduces DCC binding. Hence, synergy in DCC binding via combinatorial clustering of motifs triggers DCC assembly specifically on X chromosomes. Using an in vitro DNA binding assay, we refine the features of motifs and flanking sequences that are critical for DCC binding. Our work reveals general principles by which regulatory complexes can be recruited across an entire chromosome to control its gene expression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mecanismo Genético de Compensação de Dose , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Análise por Conglomerados , Motivos de Nucleotídeos , Cromossomo X/genética , Cromossomo X/metabolismo
3.
Cell ; 171(1): 85-102.e23, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867287

RESUMO

Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Cromossomo X/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Mecanismo Genético de Compensação de Dose , Embrião não Mamífero/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Moleculares , Mutação , Piperidinas/metabolismo , Alinhamento de Sequência , Tiofenos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-29472317

RESUMO

The function of chromatin modification in establishing higher-order chromosome structure during gene regulation has been elusive. We dissected the machinery and mechanism underlying the enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during Caenorhabditis elegans dosage compensation and discovered a key role for H4K20me1 in regulating X-chromosome topology and chromosome-wide gene expression. Structural and functional analysis of the dosage compensation complex (DCC) subunit DPY-21 revealed a novel Jumonji C demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Inactivation of demethylase activity in vivo by genome editing eliminated H4K20me1 enrichment on X chromosomes of somatic cells, increased X-linked gene expression, reduced X-chromosome compaction, and disrupted X-chromosome conformation by diminishing the formation of topologically associated domains. H4K20me1 is also enriched on the inactive X of female mice, making our studies directly relevant to mammalian development. Unexpectedly, DPY-21 also associates specifically with autosomes of nematode germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Thus, DPY-21 is an adaptable chromatin regulator. Its H4K20me2 demethylase activity can be harnessed during development for distinct biological functions by targeting it to diverse genomic locations through different mechanisms. In both somatic cells and germ cells, H4K20me1 enrichment modulates three-dimensional chromosome architecture, demonstrating the direct link between chromatin modification and higher-order chromosome structure.

5.
Science ; 331(6023): 1439-43, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21415352

RESUMO

Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5'-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.


Assuntos
Miosinas Cardíacas/metabolismo , Insuficiência Cardíaca Sistólica/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ureia/análogos & derivados , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Regulação Alostérica , Animais , Sítios de Ligação , Cálcio/metabolismo , Miosinas Cardíacas/química , Débito Cardíaco/efeitos dos fármacos , Cães , Feminino , Insuficiência Cardíaca Sistólica/fisiopatologia , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/fisiologia , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Ureia/química , Ureia/metabolismo , Ureia/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos
6.
EMBO J ; 29(20): 3437-47, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20818331

RESUMO

Members of the kinesin-8 motor class have the remarkable ability to both walk towards microtubule plus-ends and depolymerise these ends on arrival, thereby regulating microtubule length. To analyse how kinesin-8 multitasks, we studied the structure and function of the kinesin-8 motor domain. We determined the first crystal structure of a kinesin-8 and used cryo-electron microscopy to calculate the structure of the microtubule-bound motor. Microtubule-bound kinesin-8 reveals a new conformation compared with the crystal structure, including a bent conformation of the α4 relay helix and ordering of functionally important loops. The kinesin-8 motor domain does not depolymerise stabilised microtubules with ATP but does form tubulin rings in the presence of a non-hydrolysable ATP analogue. This shows that, by collaborating, kinesin-8 motor domain molecules can release tubulin from microtubules, and that they have a similar mechanical effect on microtubule ends as kinesin-13, which enables depolymerisation. Our data reveal aspects of the molecular mechanism of kinesin-8 motors that contribute to their unique dual motile and depolymerising functions, which are adapted to control microtubule length.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Modelos Moleculares , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 107(13): 5839-44, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20167803

RESUMO

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules. Inhibition of CENP-E motor activity in cultured cells and tumor xenografts caused failure of metaphase chromosome alignment and induced mitotic arrest, indicating that tight binding of CENP-E to microtubules is insufficient to satisfy the mitotic checkpoint. Consistent with genetic studies in mice suggesting that decreased CENP-E function can have a tumor-suppressive effect, inhibition of CENP-E induced tumor cell apoptosis and tumor regression.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Sarcosina/análogos & derivados , Sítio Alostérico , Animais , Antineoplásicos/química , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Técnicas In Vitro , Cinesinas/antagonistas & inibidores , Cinesinas/química , Cinesinas/metabolismo , Camundongos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Sarcosina/química , Sarcosina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Curr Top Med Chem ; 5(2): 127-45, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15853642

RESUMO

Kinesins, mechanochemical enzymes that utilize the energy of ATP to translocate along or destabilize microtubules, are essential for accurate completion of cell division. Recently, small moleculer inhibitors of one kinesin, kinesin spindle protein (KSP/Eg5/kinesin5), have been shown to be efficacious in pre-clinical studies, with one quinazolinone-based inhibitor advancing to Phase II clinical trials as a potential anticancer chemotherapeutic agent. This highlights the potential of KSP and other mitotic kinesins as targets for chemotherapeutic intervention. Ten other kinesins have been shown to play essential roles in cell division and thus may provide additional therapeutic opportunities. In this review, the biological roles of these proteins are described with emphasis on their importance to cell proliferation. In addition, kinesin motor domain structure and mechanism are described with particular attention given to the conformational changes that offer opportunities for chemical inhibition. Finally, a current list of KSP inhibitor classes is described in the context of their potential as clinical leads.


Assuntos
Antineoplásicos/farmacologia , Cinesinas/fisiologia , Mitose/fisiologia , Animais , Antineoplásicos/química , Desenho de Fármacos , Humanos , Cinesinas/antagonistas & inibidores , Modelos Moleculares , Relação Estrutura-Atividade
9.
Neuron ; 41(6): 907-14, 2004 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15046723

RESUMO

Nicotinic acetylcholine receptors are prototypes for the pharmaceutically important family of pentameric ligand-gated ion channels. Here we present atomic resolution structures of nicotine and carbamylcholine binding to AChBP, a water-soluble homolog of the ligand binding domain of nicotinic receptors and their family members, GABAA, GABAC, 5HT3 serotonin, and glycine receptors. Ligand binding is driven by enthalpy and is accompanied by conformational changes in the ligand binding site. Residues in the binding site contract around the ligand, with the largest movement in the C loop. As expected, the binding is characterized by substantial aromatic and hydrophobic contributions, but additionally there are close contacts between protein oxygens and positively charged groups in the ligands. The higher affinity of nicotine is due to a main chain hydrogen bond with the B loop and a closer packing of the aromatic groups. These structures will be useful tools for the development of new drugs involving nicotinic acetylcholine receptor-associated diseases.


Assuntos
Acetilcolina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ativação do Canal Iônico/fisiologia , Agonistas Nicotínicos/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Carbacol/metabolismo , Proteínas de Transporte/efeitos dos fármacos , Cristalografia por Raios X , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Lymnaea , Modelos Moleculares , Conformação Molecular , Sistema Nervoso/metabolismo , Nicotina/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
10.
Ann N Y Acad Sci ; 998: 81-92, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14592865

RESUMO

Acetylcholine-binding protein (AChBP) is a novel protein with high similarity to the extracellular domain of the nicotinic acetylcholine receptor. AChBP lacks the transmembrane domains and intracellular loops typical for the nAChRs. AChBP is secreted from glia cells in the central nervous system of the freshwater snail, Lymnaea stagnalis, where it modulates synaptic transmission. AChBP forms homopentamers with pharmacology that resembles the alpha(7)-type of nicotinic receptors. As such, AChBP is a good model for the ligand-binding domain of the nAChRs. In the crystal structure of AChBP at 2.7 A, each protomer has a modified immunoglobulin fold. Almost all residues previously shown to be involved in ligand binding in the nicotinic receptor are found in a pocket at the subunit interface, which is lined with aromatic residues. The AChBP crystal structure explains many of the biochemical studies on the nicotinic acetylcholine receptors. Surprisingly, the interface between protomers is relatively weakly conserved between families in the superfamily of pentameric ligand-gated ion channels. The lack of conservation has implications for the mechanism of gating of the ion channels.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Ligantes , Receptores Nicotínicos/química , Homologia Estrutural de Proteína , Animais , Anticorpos/metabolismo , Células Cultivadas , Imunogenética , Técnicas In Vitro , Modelos Neurológicos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Nicotínicos/imunologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica
11.
Novartis Found Symp ; 245: 22-9; discussion 29-32, 165-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12027010

RESUMO

Acetylcholine binding protein (AChBP) is a novel protein with high similarity to the extracellular domain of the nicotinic acetylcholine receptor. It is secreted from glia cells in the freshwater snail, Lymnaea stagnalis, where it modulates neuronal transmission. AChBP forms homopentamers with pharmacology that resembles the alpha7 nicotinic receptors. In the crystal structure of AChBP at 2.7 A, each protomer has a modified immunoglobulin fold. Almost all residues shown to be involved in ligand binding in the nicotinic receptor are found in a pocket at the subunit interface. This pocket is lined with aromatic residues, and filled with a HEPES buffer molecule. The AChBP crystal structure explains many of the biochemical studies on the nicotinic acetylcholine receptors. Surprisingly the interface between protomers is relatively weakly conserved between family members in the superfamily of pentameric ligand-gated ion channels. The lack of conservation has implications for the mechanism of gating of the ion channels.


Assuntos
Proteínas de Transporte/química , Receptores Nicotínicos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...