Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 6(12): 1-22, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053868

RESUMO

Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.


Assuntos
Bases de Dados Factuais , Lagos/química , Qualidade da Água , Estados Unidos
2.
Environ Manage ; 48(5): 957-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21858711

RESUMO

A classification system is often used to reduce the number of different ecosystem types that governmental agencies are charged with monitoring and managing. We compare the ability of several different hydrogeomorphic (HGM)-based classifications to group lakes for water chemistry/clarity. We ask: (1) Which approach to lake classification is most successful at classifying lakes for similar water chemistry/clarity? (2) Which HGM features are most strongly related to the lake classes? and, (3) Can a single classification successfully classify lakes for all of the water chemistry/clarity variables examined? We use univariate and multivariate classification and regression tree (CART and MvCART) analysis of HGM features to classify alkalinity, water color, Secchi, total nitrogen, total phosphorus, and chlorophyll a from 151 minimally disturbed lakes in Michigan USA. We developed two MvCART models overall and two CART models for each water chemistry/clarity variable, in each case comparing: local HGM characteristics alone and local HGM characteristics combined with regionalizations and landscape position. The combined CART models had the highest strength of evidence (ω(i) range 0.92-1.00) and maximized within class homogeneity (ICC range 36-66%) for all water chemistry/clarity variables except water color and chlorophyll a. Because the most successful single classification was on average 20% less successful in classifying other water chemistry/clarity variables, we found that no single classification captures variability for all lake responses tested. Therefore, we suggest that the most successful classification (1) is specific to individual response variables, and (2) incorporates information from multiple spatial scales (regionalization and local HGM variables).


Assuntos
Fenômenos Ecológicos e Ambientais , Monitoramento Ambiental , Lagos/análise , Abastecimento de Água/análise , Clorofila/metabolismo , Clorofila A , Concentração de Íons de Hidrogênio , Modelos Estatísticos , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Qualidade da Água , Abastecimento de Água/normas
3.
Environ Manage ; 41(3): 425-40, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18080795

RESUMO

Regionalization frameworks cluster geographic data to create contiguous regions of similar climate, geology and hydrology by delineating land into discrete regions, such as ecoregions or watersheds, often at several spatial scales. Although most regionalization schemes were not originally designed for aquatic ecosystem classification or management, they are often used for such purposes, with surprisingly few explicit tests of the relative ability of different regionalization frameworks to group lakes for water quality monitoring and assessment. We examined which of 11 different lake grouping schemes at two spatial scales best captures the maximum amount of variation in water quality among regions for total nutrients, water clarity, chlorophyll, overall trophic state, and alkalinity in 479 lakes in Michigan (USA). We conducted analyses on two data sets: one that included all lakes and one that included only minimally disturbed lakes. Using hierarchical linear models that partitioned total variance into within-region and among-region components, we found that ecological drainage units and 8-digit hydrologic units most consistently captured among-region heterogeneity at their respective spatial scales using all lakes (variation among lake groups = 3% to 50% and 12% to 52%, respectively). However, regionalization schemes capture less among-region variance for minimally disturbed lakes. Diagnostics of spatial autocorrelation provided insight into the relative performance of regionalization frameworks but also demonstrated that region size is only partly responsible for capturing variation among lakes. These results suggest that regionalization schemes can provide useful frameworks for lake water quality assessment and monitoring but that we must identify the appropriate spatial scale for the questions being asked, the type of management applied, and the metrics being assessed.


Assuntos
Monitoramento Ambiental , Água Doce , Ecossistema , Modelos Lineares , Michigan
4.
Environ Monit Assess ; 130(1-3): 437-54, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17106775

RESUMO

The ecoregion and watershed frameworks are landscape-based classifications that have been used to group waterbodies with respect to measures of community structure; however, they have yet to be evaluated for grouping lakes for demographic characteristics of fish populations. We used a multilevel modeling approach to determine if variability in mean fish length at age could be partitioned by ecoregions and watersheds. For the ecoregions analysis, we then examined if within-ecoregion variability could be explained by local water quality and lake morphometry characteristics. We used data from agency surveys conducted during 1974-1984 for age 2 and 3 fish of seven common warm and coolwater fish species. Variance in mean length at age between ecoregions for all species was not significant, and between-watershed variance estimates were only significant in 3 out of 14 analyses; however, the total amount of variation between watersheds was very small (ranging from 1.8% to 3.7% of the total variance), indicating that ecoregions and watersheds were ineffective in partitioning variability in mean length at age. Within ecoregions, water quality and lake morphometric characteristics accounted for 2%-23% of the variation in mean length at age. Measures of lake productivity were the most common significant covariates, with mean length at age increasing with increasing lake productivity. Much of the variability in mean length at age was not accounted for, suggesting that other local factors such as biotic interactions, fish density, and exploitation are important. The results indicate that the development of an effective regional framework for managing inland lakes will require a substantial effort to understand sources of demographic variability and that managers should not rely solely on ecoregions or watersheds for grouping lakes with similar growth rates.


Assuntos
Classificação , Peixes/crescimento & desenvolvimento , Água Doce , Animais , Ecossistema , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...