Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22281853

RESUMO

The spread of SARS-CoV-2, like that of many other pathogens, is governed by heterogeneity. "Superspreading," or "over-dispersion," is an important factor in transmission, yet it is hard to quantify. Estimates from contact tracing data are prone to potential biases due to the increased likelihood of detecting large clusters of cases, and may reflect variation in contact behavior more than biological heterogeneity. In contrast, the average number of secondary infections per contact is routinely estimated from household surveys, and these studies can minimize biases by testing all members of a household. However, the models used to analyze household transmission data typically assume that infectiousness and susceptibility are the same for all individuals or vary only with predetermined traits such as age. Here we develop and apply a combined forward simulation and inference method to quantify the degree of inter-individual variation in both infectiousness and susceptibility from observations of the distribution of infections in household surveys. First, analyzing simulated data, we show our method can reliably ascertain the presence, type, and amount of these heterogeneities with data from a sufficiently large sample of households. We then analyze a collection of household studies of COVID-19 from diverse settings around the world, and find strong evidence for large heterogeneity in both the infectiousness and susceptibility of individuals. Our results also provide a framework to improve the design of studies to evaluate household interventions in the presence of realistic heterogeneity between individuals.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274187

RESUMO

Mutations in the viral genome of SARS-CoV-2 can impact the performance of molecular diagnostic assays. In some cases, such as S gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here we describe partial ORF1ab gene target failure (pOGTF) on the cobas(R) SARS-CoV-2 assays, defined by a [≥]2 thermocycles delay in detection of the ORF1ab gene compared to the E gene. We demonstrate that pOGTF is 97% sensitive and 99% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may impact transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-478506

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have spilled over from humans to companion and wild animals since the inception of the global COVID-19 pandemic. However, whole genome sequencing data of the viral genomes that infect non-human animal species has been scant. Here, we detected and sequenced a SARS-CoV-2 delta variant (AY.3) in fecal samples from an 11-year-old domestic house cat previously exposed to an owner who tested positive for SARS-CoV-2. Molecular testing of two fecal samples collected 7 days apart yielded relatively high levels of viral RNA. Sequencing of the feline-derived viral genomes showed the two to be identical, and differing by between 4 and 14 single nucleotide polymorphisms in pairwise comparisons to human-derived lineage AY.3 sequences collected in the same geographic area and time period. However, several mutations unique to the feline samples reveal their divergence from this cohort on phylogenetic analysis. These results demonstrate continued spillover infections of emerging SARS-CoV-2 variants that threaten human and animal health, as well as highlight the importance of collecting fecal samples when testing for SARS-CoV-2 in animals. To the authors knowledge, this is the first published case of a SARS-CoV-2 delta variant in a domestic cat in the United States.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270679

RESUMO

Introductory paragraphThe SARS-CoV-2 pandemic likely began by viral spillover from animals to humans1-3; today multiple animal species are known to be susceptible to infection4-8. White-tailed deer, Odocoileus virginianus are infected in North America at substantial levels9-11, and genomic data suggests that a variant in deer may have spilled back to humans12,13. Here we characterize SARS-CoV-2 in deer from Pennsylvania (PA) sampled during fall and winter 2021. Of 123 nasal swab samples analyzed by RT-qPCR, 20 (16.3%) were positive for SARS-CoV-2. Seven whole-genome sequences were obtained, together with six more partial spike sequences. These annotated as alpha and delta variants, the first reported observations of these lineages in deer, documenting multiple new jumps from humans to deer. The alpha lineage persisted in deer after its displacement by delta in humans, and deer-derived alpha variants diverged significantly from those in humans, consistent with a distinctive evolutionary trajectory in deer.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264623

RESUMO

The severe acute respiratory coronavirus-2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. Evidence suggests that the virus is evolving to allow efficient spread through the human population, including vaccinated individuals. Here we report a study of viral variants from surveillance of the Delaware Valley, including the city of Philadelphia, and variants infecting vaccinated subjects. We sequenced and analyzed complete viral genomes from 2621 surveillance samples from March 2020 to September 2021 and compared them to genome sequences from 159 vaccine breakthroughs. In the early spring of 2020, all detected variants were of the B.1 and closely related lineages. A mixture of lineages followed, notably including B.1.243 followed by B.1.1.7 (alpha), with other lineages present at lower levels. Later isolations were dominated by B.1.617.2 (delta) and other delta lineages; delta was the exclusive variant present by the last time sampled. To investigate whether any variants appeared preferentially in vaccine breakthroughs, we devised a model based on Bayesian autoregressive moving average logistic multinomial regression to allow rigorous comparison. This revealed that B.1.617.2 (delta) showed three-fold enrichment in vaccine breakthrough cases (odds ratio of 3; 95% credible interval 0.89-11). Viral point substitutions could also be associated with vaccine breakthroughs, notably the N501Y substitution found in the alpha, beta and gamma variants (odds ratio 2.04; 95% credible interval of 1.25-3.18). This study thus provides a detailed picture of viral evolution in the Delaware Valley and a geographically matched analysis of vaccine breakthroughs; it also introduces a rigorous statistical approach to interrogating enrichment of viral variants. ImportanceSARS-CoV-2 vaccination is highly effective at reducing viral infection, hospitalization and death. However, vaccine breakthrough infections have been widely observed, raising the question of whether particular viral variants or viral mutations are associated with breakthrough. Here we report analysis of 2621 surveillance isolates from people diagnosed with COVID-19 in the Delaware Valley in South Eastern Pennsylvania, allowing rigorous comparison to 159 vaccine breakthrough case specimens. Our best estimate is a three-fold enrichment for some lineages of delta among breakthroughs, and enrichment of a notable spike substitution, N501Y. We introduce statistical methods that should be widely useful for evaluating vaccine breakthroughs and other viral phenotypes.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20246520

RESUMO

BackgroundThe SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) cycle of threshold (Ct) has been used to estimate quantitative viral load, with the goal of targeting isolation precautions for individuals with COVID-19 and guiding public health interventions. However, variability in specimen quality can alter the Ct values obtained from SARS-CoV-2 clinical assays. We sought to define how variable nasopharyngeal (NP) swab quality impacts clinical SARS-CoV-2 test sensitivity. MethodsWe performed amplification of a human gene target ({beta}-actin) in parallel with a clinical RT-PCR targeting the SARS-CoV-2 ORF1ab gene for 1311 NP specimens collected from patients with clinical concern for COVID-19. We evaluated the relationship between NP specimen quality, characterized by high Ct values for the human gene target {beta}-actin Ct, and the probability of SARS-CoV-2 detection via logistic regression, as well as the linear relationship between SARS-CoV-2 and {beta}-actin Ct. ResultsLow quality NP swabs are less likely to detect SARS-CoV-2 (odds ratio 0.654, 95%CI 0.523 to 0.802). We observed a positive linear relationship between SARS-CoV-2 and {beta}-actin Ct values (slope 0.169, 95%CI 0.092 to 0.247). COVID-19 disease severity was not associated with {beta}-actin Ct values. ConclusionsVariability in NP specimen quality accounts for significant differences in the sensitivity of clinical SARS-CoV-2 assays. If unrecognized, low quality NP specimens, which are characterized by a low level of amplifiable human DNA target, may limit the application of SARS-CoV-2 Ct values to direct infection control and public health interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA