Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
medRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496501

RESUMO

Purpose: To investigate the number of rare missense variants observed in human genome sequences by ACMG/AMP PP3/BP4 evidence strength, following the calibrated PP3/BP4 computational recommendations. Methods: Missense variants from the genome sequences of 300 probands from the Rare Genomes Project with suspected rare disease were analyzed using computational prediction tools able to reach PP3_Strong and BP4_Moderate evidence strengths (BayesDel, MutPred2, REVEL, and VEST4). The numbers of variants at each evidence strength were analyzed across disease-associated genes and genome-wide. Results: From a median of 75.5 rare (≤1% allele frequency) missense variants in disease-associated genes per proband, a median of one reached PP3_Strong, 3-5 PP3_Moderate, and 3-5 PP3_Supporting. Most were allocated BP4 evidence (median 41-49 per proband) or were indeterminate (median 17.5-19 per proband). Extending the analysis to all protein-coding genes genome-wide, the number of PP3_Strong variants increased approximately 2.6-fold compared to disease-associated genes, with a median per proband of 1-3 PP3_Strong, 8-16 PP3_Moderate, and 10-17 PP3_Supporting. Conclusion: A small number of variants per proband reached PP3_Strong and PP3_Moderate in 3,424 disease-associated genes, and though not the intended use of the recommendations, also genome-wide. Use of PP3/BP4 evidence as recommended from calibrated computational prediction tools in the clinical diagnostic laboratory is unlikely to inappropriately contribute to the classification of an excessive number of variants as Pathogenic or Likely Pathogenic by ACMG/AMP rules.

2.
Pac Symp Biocomput ; 29: 446-449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160298

RESUMO

Precision medicine, also often referred to as personalized medicine, targets the development of treatments and preventative measures specific to the individual's genomic signatures, lifestyle, and environmental conditions. The series of Precision Medicine sessions in PSB has continuously highlighted the advances in this field. Our 2024 collection of manuscripts showcases algorithmic advances that integrate data from distinct modalities and introduce innovative approaches to extract new, medically relevant information from existing data. These evolving technology and analytical methods promise to bring closer the goals of precision medicine to improve health and increase lifespan.


Assuntos
Biologia Computacional , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Genômica
3.
Pac Symp Biocomput ; 29: 641-644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160312

RESUMO

Large Language Models (LLMs) are a type of artificial intelligence that has been revolutionizing various fields, including biomedicine. They have the capability to process and analyze large amounts of data, understand natural language, and generate new content, making them highly desirable in many biomedical applications and beyond. In this workshop, we aim to introduce the attendees to an in-depth understanding of the rise of LLMs in biomedicine, and how they are being used to drive innovation and improve outcomes in the field, along with associated challenges and pitfalls.


Assuntos
Inteligência Artificial , Biologia Computacional , Humanos , Idioma
5.
Genome Med ; 15(1): 51, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443081

RESUMO

BACKGROUND: Curated databases of genetic variants assist clinicians and researchers in interpreting genetic variation. Yet, these databases contain some misclassified variants. It is unclear whether variant misclassification is abating as these databases rapidly grow and implement new guidelines. METHODS: Using archives of ClinVar and HGMD, we investigated how variant misclassification has changed over 6 years, across different ancestry groups. We considered inborn errors of metabolism (IEMs) screened in newborns as a model system because these disorders are often highly penetrant with neonatal phenotypes. We used samples from the 1000 Genomes Project (1KGP) to identify individuals with genotypes that were classified by the databases as pathogenic. Due to the rarity of IEMs, nearly all such classified pathogenic genotypes indicate likely variant misclassification in ClinVar or HGMD. RESULTS: While the false-positive rates of both ClinVar and HGMD have improved over time, HGMD variants currently imply two orders of magnitude more affected individuals in 1KGP than ClinVar variants. We observed that African ancestry individuals have a significantly increased chance of being incorrectly indicated to be affected by a screened IEM when HGMD variants are used. However, this bias affecting genomes of African ancestry was no longer significant once common variants were removed in accordance with recent variant classification guidelines. We discovered that ClinVar variants classified as Pathogenic or Likely Pathogenic are reclassified sixfold more often than DM or DM? variants in HGMD, which has likely resulted in ClinVar's lower false-positive rate. CONCLUSIONS: Considering misclassified variants that have since been reclassified reveals our increasing understanding of rare genetic variation. We found that variant classification guidelines and allele frequency databases comprising genetically diverse samples are important factors in reclassification. We also discovered that ClinVar variants common in European and South Asian individuals were more likely to be reclassified to a lower confidence category, perhaps due to an increased chance of these variants being classified by multiple submitters. We discuss features for variant classification databases that would support their continued improvement.


Assuntos
Bases de Dados Genéticas , Variação Genética , Frequência do Gene , Genótipo , Genômica
8.
New Phytol ; 239(1): 222-239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631975

RESUMO

To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.


Assuntos
Basidiomycota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Basidiomycota/genética , Fungos/genética , Pirofosfatases/metabolismo , Virulência/genética , Doenças das Plantas/microbiologia , Nudix Hidrolases
9.
Pac Symp Biocomput ; 28: 257-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36540982

RESUMO

Precision medicine requires a deep understanding of complex biomedical and healthcare data, which is being generated at exponential rates and increasingly made available through public biobanks, electronic medical record systems and biomedical databases and knowledgebases. The complexity and sheer amount of data prohibit manual manipulation. Instead, the field depends on artificial intelligence approaches to parse, annotate, evaluate and interpret the data to enable applications to patient healthcare At the 2023 Pacific Symposium on Biocomputing (PSB) session entitled "Precision Medicine: Using Artificial Intelligence (AI) to improve diagnostics and healthcare", we spotlight research that develops and applies computational methodologies to solve biomedical problems.


Assuntos
Inteligência Artificial , Medicina de Precisão , Humanos , Biologia Computacional , Software , Atenção à Saúde
10.
Pac Symp Biocomput ; 28: 461-471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36541000

RESUMO

Innovations in human-centered biomedical informatics are often developed with the eventual goal of real-world translation. While biomedical research questions are usually answered in terms of how a method performs in a particular context, we argue that it is equally important to consider and formally evaluate the ethical implications of informatics solutions. Several new research paradigms have arisen as a result of the consideration of ethical issues, including but not limited for privacy-preserving computation and fair machine learning. In the spirit of the Pacific Symposium on Biocomputing, we discuss broad and fundamental principles of ethical biomedical informatics in terms of Olelo Noeau, or Hawaiian proverbs and poetical sayings that capture Hawaiian values. While we emphasize issues related to privacy and fairness in particular, there are a multitude of facets to ethical biomedical informatics that can benefit from a critical analysis grounded in ethics.


Assuntos
Biologia Computacional , Informática , Humanos , Havaí , Privacidade
11.
Pac Symp Biocomput ; 28: 536-540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36541007

RESUMO

As biomedical research data grow, researchers need reliable and scalable solutions for storage and compute. There is also a need to build systems that encourage and support collaboration and data sharing, to result in greater reproducibility. This has led many researchers and organizations to use cloud computing [1]. The cloud not only enables scalable, on-demand resources for storage and compute, but also collaboration and continuity during virtual work, and can provide superior security and compliance features. Moving to or adding cloud resources, however, is not trivial or without cost, and may not be the best choice in every scenario. The goal of this workshop is to explore the benefits of using the cloud in biomedical and computational research, and considerations (pros and cons) for a range of scenarios including individual researchers, collaborative research teams, consortia research programs, and large biomedical research agencies / organizations.


Assuntos
Pesquisa Biomédica , Biologia Computacional , Humanos , Computação em Nuvem , Reprodutibilidade dos Testes , Disseminação de Informação
12.
Am J Hum Genet ; 109(12): 2163-2177, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413997

RESUMO

Recommendations from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) for interpreting sequence variants specify the use of computational predictors as "supporting" level of evidence for pathogenicity or benignity using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, and ACMG/AMP recommendations that require the consensus of multiple predictors, lack quantitative support. Previously, we described a probabilistic framework that quantified the strengths of evidence (supporting, moderate, strong, very strong) within ACMG/AMP recommendations. We have extended this framework to computational predictors and introduce a new standard that converts a tool's scores to PP3 and BP4 evidence strengths. Our approach is based on estimating the local positive predictive value and can calibrate any computational tool or other continuous-scale evidence on any variant type. We estimate thresholds (score intervals) corresponding to each strength of evidence for pathogenicity and benignity for thirteen missense variant interpretation tools, using carefully assembled independent data sets. Most tools achieved supporting evidence level for both pathogenic and benign classification using newly established thresholds. Multiple tools reached score thresholds justifying moderate and several reached strong evidence levels. One tool reached very strong evidence level for benign classification on some variants. Based on these findings, we provide recommendations for evidence-based revisions of the PP3 and BP4 ACMG/AMP criteria using individual tools and future assessment of computational methods for clinical interpretation.


Assuntos
Calibragem , Humanos , Consenso , Escolaridade , Virulência
13.
Front Immunol ; 13: 928252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967429

RESUMO

Newborn screening for severe combined immunodeficiency (SCID) has not only accelerated diagnosis and improved treatment for affected infants, but also led to identification of novel genes required for human T cell development. A male proband had SCID newborn screening showing very low T cell receptor excision circles (TRECs), a biomarker for thymic output of nascent T cells. He had persistent profound T lymphopenia, but normal numbers of B and natural killer (NK) cells. Despite an allogeneic hematopoietic stem cell transplant from his brother, he failed to develop normal T cells. Targeted resequencing excluded known SCID genes; however, whole exome sequencing (WES) of the proband and parents revealed a maternally inherited X-linked missense mutation in MED14 (MED14V763A), a component of the mediator complex. Morpholino (MO)-mediated loss of MED14 function attenuated T cell development in zebrafish. Moreover, this arrest was rescued by ectopic expression of cDNA encoding the wild type human MED14 ortholog, but not by MED14V763A , suggesting that the variant impaired MED14 function. Modeling of the equivalent mutation in mouse (Med14V769A) did not disrupt T cell development at baseline. However, repopulation of peripheral T cells upon competitive bone marrow transplantation was compromised, consistent with the incomplete T cell reconstitution experienced by the proband upon transplantation with bone marrow from his healthy male sibling, who was found to have the same MED14V763A variant. Suspecting that the variable phenotypic expression between the siblings was influenced by further mutation(s), we sought to identify genetic variants present only in the affected proband. Indeed, WES revealed a mutation in the L1 cell adhesion molecule (L1CAMQ498H); however, introducing that mutation in vivo in mice did not disrupt T cell development. Consequently, immunodeficiency in the proband may depend upon additional, unidentified gene variants.


Assuntos
Linfopenia , Imunodeficiência Combinada Severa , Animais , Humanos , Lactente , Recém-Nascido , Linfopenia/genética , Masculino , Camundongos , Triagem Neonatal , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Linfócitos T , Peixe-Zebra
15.
Am J Med Genet C Semin Med Genet ; 190(2): 222-230, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35838066

RESUMO

In the US, newborn screening (NBS) is a unique health program that supports health equity and screens virtually every baby after birth, and has brought timely treatments to babies since the 1960's. With the decreasing cost of sequencing and the improving methods to interpret genetic data, there is an opportunity to add DNA sequencing as a screening method to facilitate the identification of babies with treatable conditions that cannot be identified in any other scalable way, including highly penetrant genetic neurodevelopmental disorders (NDD). However, the lack of effective dietary or drug-based treatments has made it nearly impossible to consider NDDs in the current NBS framework, yet it is anticipated that any treatment will be maximally effective if started early. Hence there is a critical need for large scale pilot studies to assess if and how NDDs can be effectively screened at birth, if parents desire that information, and what impact early diagnosis may have. Here we attempt to provide an overview of the recent advances in NDD treatments, explore the possible framework of setting up a pilot study to genetically screen for NDDs, highlight key technical, practical, and ethical considerations and challenges, and examine the policy and health system implications.


Assuntos
Triagem Neonatal , Transtornos do Neurodesenvolvimento , Lactente , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Projetos Piloto , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Pais
18.
Am J Hum Genet ; 109(2): 195-209, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032432

RESUMO

Whole-genome sequencing resolves many clinical cases where standard diagnostic methods have failed. However, at least half of these cases remain unresolved after whole-genome sequencing. Structural variants (SVs; genomic variants larger than 50 base pairs) of uncertain significance are the genetic cause of a portion of these unresolved cases. As sequencing methods using long or linked reads become more accessible and SV detection algorithms improve, clinicians and researchers are gaining access to thousands of reliable SVs of unknown disease relevance. Methods to predict the pathogenicity of these SVs are required to realize the full diagnostic potential of long-read sequencing. To address this emerging need, we developed StrVCTVRE to distinguish pathogenic SVs from benign SVs that overlap exons. In a random forest classifier, we integrated features that capture gene importance, coding region, conservation, expression, and exon structure. We found that features such as expression and conservation are important but are absent from SV classification guidelines. We leveraged multiple resources to construct a size-matched training set of rare, putatively benign and pathogenic SVs. StrVCTVRE performs accurately across a wide SV size range on independent test sets, which will allow clinicians and researchers to eliminate about half of SVs from consideration while retaining a 90% sensitivity. We anticipate clinicians and researchers will use StrVCTVRE to prioritize SVs in probands where no SV is immediately compelling, empowering deeper investigation into novel SVs to resolve cases and understand new mechanisms of disease. StrVCTVRE runs rapidly and is publicly available.


Assuntos
Algoritmos , Genoma Humano , Variação Estrutural do Genoma , Software , Aprendizado de Máquina Supervisionado , Conjuntos de Dados como Assunto , Éxons , Genômica/métodos , Humanos , Curva ROC , Sequenciamento Completo do Genoma/estatística & dados numéricos
19.
Pac Symp Biocomput ; 27: 223-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34890151

RESUMO

The continued generation of large amounts of data within healthcare-from imaging to electronic medical health records to genomics and multi-omics -necessitates tools and methods to parse and interpret these data to improve healthcare outcomes. Artificial intelligence, and in particular deep learning, has enabled researchers to gain new insights from large scale and multimodal data. At the 2022 Pacific Symposium on Biocomputing (PSB) session entitled "Precision Medicine: Using Artificial Intelligence to Improve Diagnostics and Healthcare", we showcase the latest research, influenced and inspired by the idea of using technology to build a more fair, tailored, and cost-effective healthcare system after the COVID-19 pandemic.


Assuntos
Inteligência Artificial , COVID-19 , Biologia Computacional , Atenção à Saúde , Humanos , Pandemias , Medicina de Precisão , SARS-CoV-2
20.
Nucleic Acids Res ; 50(D1): D553-D559, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850923

RESUMO

The Structural Classification of Proteins-extended (SCOPe, https://scop.berkeley.edu) knowledgebase aims to provide an accurate, detailed, and comprehensive description of the structural and evolutionary relationships amongst the majority of proteins of known structure, along with resources for analyzing the protein structures and their sequences. Structures from the PDB are divided into domains and classified using a combination of manual curation and highly precise automated methods. In the current release of SCOPe, 2.08, we have developed search and display tools for analysis of genetic variants we mapped to structures classified in SCOPe. In order to improve the utility of SCOPe to automated methods such as deep learning classifiers that rely on multiple alignment of sequences of homologous proteins, we have introduced new machine-parseable annotations that indicate aberrant structures as well as domains that are distinguished by a smaller repeat unit. We also classified structures from 74 of the largest Pfam families not previously classified in SCOPe, and we improved our algorithm to remove N- and C-terminal cloning, expression and purification sequences from SCOPe domains. SCOPe 2.08-stable classifies 106 976 PDB entries (about 60% of PDB entries).


Assuntos
Biologia Computacional , Bases de Dados de Proteínas , Proteínas/classificação , Algoritmos , Bases de Dados de Compostos Químicos , Regulação da Expressão Gênica/genética , Aprendizado de Máquina , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...