Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38559204

RESUMO

Competition over access to resources, such as food and mates, is believed to be one of the major costs associated with group living. Two socioecological factors suggested to predict the intensity of competition are group size and the relative abundance of sexually active individuals. However, empirical evidence linking these factors to injuries and survival costs is scarce. Here, we leveraged 10 years of data from free-ranging rhesus macaques where injuries inflicted by conspecifics are associated with a high mortality risk. We tested if group size and adult sex ratio predicted the occurrence of injuries and used data on physical aggression to contextualise these results. We found that males were less likely to be injured when living in larger groups, potentially due to advantages in intergroup encounters. Females, instead, had higher injury risk when living in larger groups but this was not explained by within-group aggression among females. Further, male-biased sex ratios predicted a weak increase in injury risk in females and were positively related to male-female aggression, indicating that male coercion during mating competition may be a cause of injuries in females. Overall, our results provide insights into sex differences in the fitness-related costs of competition and empirical evidence for long-standing predictions on the evolution of group living.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559098

RESUMO

The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity, and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence evolutionary dynamics of social ageing in natural populations.

3.
Am J Biol Anthropol ; : e24901, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445298

RESUMO

OBJECTIVES: Estimation of body mass from skeletal metrics can reveal important insights into the paleobiology of archeological or fossil remains. The standard approach constructs predictive equations from postcrania, but studies have questioned the reliability of traditional measures. Here, we examine several skeletal features to assess their accuracy in predicting body mass. MATERIALS AND METHODS: Antemortem mass measurements were compared with common skeletal dimensions from the same animals postmortem, using 115 rhesus macaques (male: n = 43; female: n = 72). Individuals were divided into training (n = 58) and test samples (n = 57) to build and assess Ordinary Least Squares or multivariate regressions by residual sum of squares (RSS) and AIC weights. A leave-one-out approach was implemented to formulate the best fit multivariate models, which were compared against a univariate and a previously published catarrhine body-mass estimation model. RESULTS: Femur circumference represented the best univariate model. The best model overall was composed of four variables (femur, tibia and fibula circumference and humerus length). By RSS and AICw, models built from rhesus macaque data (RSS = 26.91, AIC = -20.66) better predicted body mass than did the catarrhine model (RSS = 65.47, AIC = 20.24). CONCLUSION: Body mass in rhesus macaques is best predicted by a 4-variable equation composed of humerus length and hind limb midshaft circumferences. Comparison of models built from the macaque versus the catarrhine data highlight the importance of taxonomic specificity in predicting body mass. This paper provides a valuable dataset of combined somatic and skeletal data in a primate, which can be used to build body mass equations for fragmentary fossil evidence.

4.
Am J Biol Anthropol ; : e24920, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447005

RESUMO

OBJECTIVES: Interpretations of the primate and human fossil record often rely on the estimation of somatic dimensions from bony measures. Both somatic and skeletal variation have been used to assess how primates respond to environmental change. However, it is unclear how well skeletal variation matches and predicts soft tissue. Here, we empirically test the relationship between tissues by comparing somatic and skeletal measures using paired measures of pre- and post-mortem rhesus macaques from Cayo Santiago, Puerto Rico. MATERIALS AND METHODS: Somatic measurements were matched with skeletal dimensions from 105 rhesus macaque individuals to investigate paired signals of variation (i.e., coefficients of variation, sexual dimorphism) and bivariate codependence (reduced major axis regression) in measures of: (1) limb length; (2) joint breadth; and (3) limb circumference. Predictive models for the estimation of soft tissue dimensions from skeletons were built from Ordinary Least Squares regressions. RESULTS: Somatic and skeletal measurements showed statistically equivalent coefficients of variation and sexual dimorphism as well as high epiphyses-present ordinary least square (OLS) correlations in limb lengths (R2 >0.78, 0.82), joint breadths (R2 >0.74, 0.83) and, to a lesser extent, limb circumference (R2 >0.53, 0.68). CONCLUSION: Skeletal measurements are good substitutions for somatic values based on population signals of variation. OLS regressions indicate that skeletal correlates are highly predictive of somatic dimensions. The protocols and regression equations established here provide a basis for reliable reconstruction of somatic dimension from catarrhine fossils and validate our ability to compare or combine results of studies based on population data of either hard or soft tissue proxies.

5.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260273

RESUMO

Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.

6.
Geroscience ; 46(2): 2107-2122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37853187

RESUMO

Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.


Assuntos
Antígenos HLA-DR , Alienação Social , Masculino , Feminino , Animais , Humanos , Macaca mulatta , Linfócitos T CD8-Positivos , Inflamação
7.
Neurosci Biobehav Rev ; 154: 105424, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827475

RESUMO

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.


Assuntos
Envelhecimento , Comportamento Social , Animais , Macaca mulatta/fisiologia , Biologia
8.
Microbiol Spectr ; : e0297423, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750731

RESUMO

While skin microbes are known to mediate human health and disease, there has been minimal research on the interactions between skin microbiota, social behavior, and year-to-year effects in non-human primates-important animal models for translational biomedical research. To examine these relationships, we analyzed skin microbes from 78 rhesus macaques living on Cayo Santiago Island, Puerto Rico. We considered age, sex, and social group membership, and characterized social behavior by assessing dominance rank and patterns of grooming as compared to nonsocial behaviors. To measure the effects of a shifting environment, we sampled skin microbiota (based on sequence analysis of the 16S rRNA V4 region) and assessed weather across sampling periods between 2013 and 2015. We hypothesized that, first, monkeys with similar social behavior and/or in the same social group would possess similar skin microbial composition due, in part, to physical contact, and, second, microbial diversity would differ across sampling periods. We found significant phylum-level differences between social groups in the core microbiome as well as an association between total grooming rates and alpha diversity in the complete microbiome, but no association between microbial diversity and measures of rank or other nonsocial behaviors. We also identified alpha and beta diversity differences in microbiota and differential taxa abundance across two sampling periods. Our findings indicate that social dynamics interact with yearly environmental changes to shape the skin microbiota in rhesus macaques, with potential implications for understanding the factors affecting the microbiome in humans, which share many biological and social characteristics with these animals. IMPORTANCE Primate studies are valuable for translational and evolutionary insights into the human microbiome. The majority of primate microbiome studies focus on the gut, so less is known about the factors impacting the microbes on skin and how their links affect health and behavior. Here, we probe the impact of social interactions and the yearly environmental changes on food-provisioned, free-ranging monkeys living on a small island. We expected animals that lived together and groomed each other would have more similar microbes on their skin, but surprisingly found that the external environment was a stronger influence on skin microbiome composition. These findings have implications for our understanding of the human skin microbiome, including potential manipulations to improve health and treat disease.

9.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693423

RESUMO

Exposure to adversity during early life is linked to lasting detrimental effects on evolutionary fitness across many taxa. However, due to the challenges of collecting longitudinal data, especially in species where one sex disperses, direct evidence from long-lived species remains relatively scarce. Here we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) at Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of ten forms of early life adversity for 6,599 macaques (3,230 male, 3,369 female), with a smaller sample size (N=299) for one form of adversity (maternal social isolation) which required high-resolution behavioral data. We found that individuals who experienced more early life adversity died earlier than those who experienced less adversity. Mortality risk was highest during early life, defined as birth to four years old, suggesting acute survival effects of adversity, but heightened mortality risk was also present in macaques who survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands, female philopatry, and male dispersal. By leveraging data on thousands of macaques collected over decades, our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing, and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities in long-lived species.

10.
Mol Ecol Resour ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602981

RESUMO

Monitoring genetic diversity in wild populations is a central goal of ecological and evolutionary genetics and is critical for conservation biology. However, genetic studies of nonmodel organisms generally lack access to species-specific genotyping methods (e.g. array-based genotyping) and must instead use sequencing-based approaches. Although costs are decreasing, high-coverage whole-genome sequencing (WGS), which produces the highest confidence genotypes, remains expensive. More economical reduced representation sequencing approaches fail to capture much of the genome, which can hinder downstream inference. Low-coverage WGS combined with imputation using a high-confidence reference panel is a cost-effective alternative, but the accuracy of genotyping using low-coverage WGS and imputation in nonmodel populations is still largely uncharacterized. Here, we empirically tested the accuracy of low-coverage sequencing (0.1-10×) and imputation in two natural populations, one with a large (n = 741) reference panel, rhesus macaques (Macaca mulatta), and one with a smaller (n = 68) reference panel, gelada monkeys (Theropithecus gelada). Using samples sequenced to coverage as low as 0.5×, we could impute genotypes at >95% of the sites in the reference panel with high accuracy (median r2 ≥ 0.92). We show that low-coverage imputed genotypes can reliably calculate genetic relatedness and population structure. Based on these data, we also provide best practices and recommendations for researchers who wish to deploy this approach in other populations, with all code available on GitHub (https://github.com/mwatowich/LoCSI-for-non-model-species). Our results endorse accurate and effective genotype imputation from low-coverage sequencing, enabling the cost-effective generation of population-scale genetic datasets necessary for tackling many pressing challenges of wildlife conservation.

11.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503037

RESUMO

The increasing frequency and intensity of extreme weather events due to climate change has the potential to alter ecosystem dynamics and wildlife health. Here we show that increasing social connections in response to a hurricane enhanced disease transmission risk for years after the event in a population of rhesus macaques. Our findings reveal that behavioural responses to natural disasters can elevate epidemic risk, thereby threatening wildlife health, population viability, and spillover to humans.

12.
R Soc Open Sci ; 10(7): 230486, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476521

RESUMO

Understanding the evolution of group-living and cooperation requires information on who animals live and cooperate with. Animals can live with kin, non-kin or both, and kinship structure can influence the benefits and costs of group-living and the evolution of within-group cooperation. One aspect of kinship structure is kinship composition, i.e. a group-level attribute of the presence of kin and/or non-kin dyads in groups. Despite its putative importance, the kinship composition of mammalian groups has yet to be characterized. Here, we use the published literature to build an initial kinship composition dataset in mammals, laying the groundwork for future work in the field. In roughly half of the 18 species in our sample, individuals lived solely with same-sex kin, and, in the other half, individuals lived with related and unrelated individuals of the same sex. These initial results suggest that it is not rare for social mammals to live with unrelated individuals of the same sex, highlighting the importance of considering indirect and direct fitness benefits as co-drivers of the evolution of sociality. We hope that our initial dataset and insights will spur the study of kinship structure and sociality towards new exciting avenues.

13.
Curr Biol ; 33(15): 3250-3256.e4, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478863

RESUMO

Understanding the evolution of menopause presents a long-standing scientific challenge1,2,3-why should females cease ovulation prior to the end of their natural lifespan? In human societies, intergenerational resource transfers, for example, food sharing and caregiving, are thought to have played a key role in the evolution of menopause, providing a pathway by which postreproductive females can boost the fitness of their kin.4,5,6 To date however, other late-life contributions that postreproductive females may provide their kin have not been well studied. Here, we test the hypothesis that postreproductive female resident killer whales (Orcinus orca) provide social support to their offspring by reducing the socially inflicted injuries they experience. We found that socially inflicted injuries, as quantified by tooth rake marks, are lower for male offspring in the presence of their postreproductive mother. In contrast, we find no evidence that postreproductive mothers reduce rake marking in their daughters. Similarly, we find no evidence that either reproductive mothers or grandmothers (reproductive or postreproductive) reduce socially inflicted injuries in their offspring and grandoffspring, respectively. Moreover, we find that postreproductive females have no effect on reducing the rake marks for whales in their social unit who are not their offspring. Taken together, our results highlight that directing late-life support may be a key pathway by which postreproductive females transfer social benefits to their male offspring.


Assuntos
Orca , Animais , Masculino , Humanos , Feminino , Reprodução , Mães , Longevidade , Baleias
14.
Invest Ophthalmol Vis Sci ; 64(7): 3, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261386

RESUMO

Purpose: Rhesus macaques (Macaca mulatta) are the premier nonhuman primate model for studying human health and disease. We investigated if age was associated with clinically relevant ocular features in a large cohort of free-ranging rhesus macaques from Cayo Santiago, Puerto Rico. Methods: We evaluated 120 rhesus macaques (73 males, 47 females) from 0 to 29 years old (mean ± SD: 12.6 ± 6.4) from September to December 2021. The ophthalmic evaluation included intraocular pressure (IOP) assessment, corneal pachymetry, biomicroscopy, A-scan biometry, automated refraction, and fundus photography after pupil dilation. The associations of age with the outcomes were investigated through multilevel mixed-effects models adjusted for sex and weight. Results: On average, IOP, pachymetry, axial length, and automated refraction spherical equivalent were 18.37 ± 4.68 mmHg, 474.43 ± 32.21 µm, 19.49 ± 1.24 mm, and 0.30 ± 1.70 diopters (D), respectively. Age was significantly associated with pachymetry (ß coefficient = -1.20; 95% confidence interval [CI], -2.27 to -0.14; P = 0.026), axial length (ß coefficient = 0.03; 95% CI, 0.01 to 0.05; P = 0.002), and spherical equivalent (ß coefficient = -0.12; 95% CI, -0.22 to -0.02; P = 0.015). No association was detected between age and IOP. The prevalence of cataracts in either eye was 10.83% (95% CI, 6.34-17.89) and was significantly associated with age (odds ratio [OR] = 1.20; 95% CI, 1.06-1.36; P = 0.004). Retinal drusen in either eye was observed in 15.00% (95% CI, 9.60-22.68) of animals, which was also significantly associated with age (OR = 1.14; 95% CI, 1.02-1.27; P = 0.020). Conclusions: Rhesus macaques exhibit age-related ocular associations similar to those observed in human aging, including decreased corneal thickness, increased axial length, myopic shift, and higher prevalence of cataract and retinal drusen.


Assuntos
Catarata , Drusas Retinianas , Masculino , Animais , Feminino , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Macaca mulatta , Olho , Pressão Intraocular , Tonometria Ocular
15.
Integr Comp Biol ; 63(3): 681-692, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279895

RESUMO

Adverse experiences in early life are associated with aging-related disease risk and mortality across many species. In humans, confounding factors, as well as the difficulty of directly measuring experiences and outcomes from birth till death, make it challenging to identify how early life adversity impacts aging and health. These challenges can be mitigated, in part, through the study of non-human animals, which are exposed to parallel forms of adversity and can age similarly to humans. Furthermore, studying the links between early life adversity and aging in natural populations of non-human animals provides an excellent opportunity to better understand the social and ecological pressures that shaped the evolution of early life sensitivities. Here, we highlight ongoing and future research directions that we believe will most effectively contribute to our understanding of the evolution of early life sensitivities and their repercussions.


Assuntos
Envelhecimento , Estresse Fisiológico , Animais , Modelos Biológicos
16.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220061, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36802789

RESUMO

Ageing affects many phenotypic traits, but its consequences for social behaviour have only recently become apparent. Social networks emerge from associations between individuals. The changes in sociality that occur as individuals get older are thus likely to impact network structure, yet this remains unstudied. Here we use empirical data from free-ranging rhesus macaques and an agent-based model to test how age-based changes in social behaviour feed up to influence: (i) an individual's level of indirect connectedness in their network and (ii) overall patterns of network structure. Our empirical analyses revealed that female macaques became less indirectly connected as they aged for some, but not for all network measures examined. This suggests that indirect connectivity is affected by ageing, and that ageing animals can remain well integrated in some social contexts. Surprisingly, we did not find evidence for a relationship between age distribution and the structure of female macaque networks. We used an agent-based model to gain further understanding of the link between age-based differences in sociality and global network structure, and under which circumstances global effects may be detectable. Overall, our results suggest a potentially important and underappreciated role of age in the structure and function of animal collectives, which warrants further investigation. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Assuntos
Envelhecimento , Comportamento Social , Animais , Feminino , Macaca mulatta , Meio Social , Rede Social
17.
bioRxiv ; 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36747827

RESUMO

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago Island, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques. We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.

18.
Methods Ecol Evol ; 14(9): 2411-2420, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38463700

RESUMO

Animal social networks are often constructed from point estimates of edge weights. In many contexts, edge weights are inferred from observational data, and the uncertainty around estimates can be affected by various factors. Though this has been acknowledged in previous work, methods that explicitly quantify uncertainty in edge weights have not yet been widely adopted, and remain undeveloped for many common types of data. Furthermore, existing methods are unable to cope with some of the complexities often found in observational data, and do not propagate uncertainty in edge weights to subsequent statistical analyses.We introduce a unified Bayesian framework for modelling social networks based on observational data. This framework, which we call BISoN, can accommodate many common types of observational social data, can capture confounds and model effects at the level of observations, and is fully compatible with popular methods used in social network analysis.We show how the framework can be applied to common types of data and how various types of downstream statistical analyses can be performed, including non-random association tests and regressions on network properties.Our framework opens up the opportunity to test new types of hypotheses, make full use of observational datasets, and increase the reliability of scientific inferences. We have made both an R package and example R scripts available to enable adoption of the framework.

19.
Nat Neurosci ; 25(12): 1714-1723, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424430

RESUMO

Aging is accompanied by a host of social and biological changes that correlate with behavior, cognitive health and susceptibility to neurodegenerative disease. To understand trajectories of brain aging in a primate, we generated a multiregion bulk (N = 527 samples) and single-nucleus (N = 24 samples) brain transcriptional dataset encompassing 15 brain regions and both sexes in a unique population of free-ranging, behaviorally phenotyped rhesus macaques. We demonstrate that age-related changes in the level and variance of gene expression occur in genes associated with neural functions and neurological diseases, including Alzheimer's disease. Further, we show that higher social status in females is associated with younger relative transcriptional ages, providing a link between the social environment and aging in the brain. Our findings lend insight into biological mechanisms underlying brain aging in a nonhuman primate model of human behavior, cognition and health.


Assuntos
Doenças Neurodegenerativas , Feminino , Masculino , Humanos , Animais , Macaca mulatta , Transcriptoma , Envelhecimento/genética , Meio Social , Núcleo Solitário
20.
Proc Natl Acad Sci U S A ; 119(49): e2209180119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36445967

RESUMO

Accumulating evidence in humans and other mammals suggests older individuals tend to have smaller social networks. Uncovering the cause of these declines can inform how changes in social relationships with age affect health and fitness in later life. While age-based declines in social networks have been thought to be detrimental, physical and physiological limitations associated with age may lead older individuals to adjust their social behavior and be more selective in partner choice. Greater selectivity with age has been shown in humans, but the extent to which this phenomenon occurs across the animal kingdom remains an open question. Using longitudinal data from a population of rhesus macaques on Cayo Santiago, we provide compelling evidence in a nonhuman animal for within-individual increases in social selectivity with age. Our analyses revealed that adult female macaques actively reduced the size of their networks as they aged and focused on partners previously linked to fitness benefits, including kin and partners to whom they were strongly and consistently connected earlier in life. Females spent similar amounts of time socializing as they aged, suggesting that network shrinkage does not result from lack of motivation or ability to engage, nor was this narrowing driven by the deaths of social partners. Furthermore, females remained attractive companions and were not isolated by withdrawal of social partners. Taken together, our results provide rare empirical evidence for social selectivity in nonhumans, suggesting that patterns of increasing selectivity with age may be deeply rooted in primate evolution.


Assuntos
Individualidade , Comportamento Social , Adulto , Animais , Humanos , Feminino , Idoso , Macaca mulatta , Relações Interpessoais , Motivação , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...