Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270789

RESUMO

The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We use plasma from 20 unvaccinated and seven vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies target Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization is not extensively cross-reactive for VOCs (14 to 31-fold titer reduction) and we observe 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection was associated with improved cross-neutralization of VOCs, with titers exceeding 1:2,100. This has important implications for vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. While Omicron-based immunogens may be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2 naive individuals.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266049

RESUMO

The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in severely ill, hospitalized donors, and are cross-reactive against diverse SARS-CoV-2 variants, including the extremely neutralization resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-434193

RESUMO

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-427166

RESUMO

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA