Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
3.
Insights Imaging ; 15(1): 208, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143443

RESUMO

AIM: To determine the effectiveness of functional stress testing and computed tomography angiography (CTA) for diagnosis of obstructive coronary artery disease (CAD). METHODS AND RESULTS: Two-thousand nine-hundred twenty symptomatic stable chest pain patients were included in the international Collaborative Meta-Analysis of Cardiac CT consortium to compare CTA with exercise electrocardiography (exercise-ECG) and single-photon emission computed tomography (SPECT) for diagnosis of CAD defined as ≥ 50% diameter stenosis by invasive coronary angiography (ICA) as reference standard. Generalised linear mixed models were used for calculating the diagnostic accuracy of each diagnostic test including non-diagnostic results as dependent variables in a logistic regression model with random intercepts and slopes. Covariates were the reference standard ICA, the type of diagnostic method, and their interactions. CTA showed significantly better diagnostic performance (p < 0.0001) with a sensitivity of 94.6% (95% CI 92.7-96) and a specificity of 76.3% (72.2-80) compared to exercise-ECG with 54.9% (47.9-61.7) and 60.9% (53.4-66.3), SPECT with 72.9% (65-79.6) and 44.9% (36.8-53.4), respectively. The positive predictive value of CTA was ≥ 50% in patients with a clinical pretest probability of 10% or more while this was the case for ECG and SPECT at pretest probabilities of ≥ 40 and 28%. CTA reliably excluded obstructive CAD with a post-test probability of below 15% in patients with a pretest probability of up to 74%. CONCLUSION: In patients with stable chest pain, CTA is more effective than functional testing for the diagnosis as well as for reliable exclusion of obstructive CAD. CTA should become widely adopted in patients with intermediate pretest probability. SYSTEMATIC REVIEW REGISTRATION: PROSPERO Database for Systematic Reviews-CRD42012002780. CRITICAL RELEVANCE STATEMENT: In symptomatic stable chest pain patients, coronary CTA is more effective than functional testing for diagnosis and reliable exclusion of obstructive CAD in intermediate pretest probability of CAD. KEY POINTS: Coronary computed tomography angiography showed significantly better diagnostic performance (p < 0.0001) for diagnosis of coronary artery disease compared to exercise-ECG and SPECT. The positive predictive value of coronary computed tomography angiography was ≥ 50% in patients with a clinical pretest probability of at least 10%, for ECG ≥ 40%, and for SPECT 28%. Coronary computed tomography angiography reliably excluded obstructive coronary artery disease with a post-test probability of below 15% in patients with a pretest probability of up to 74%.

5.
Radiol Artif Intell ; 6(5): e230502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39017033

RESUMO

Purpose To develop and evaluate a publicly available deep learning model for segmenting and classifying cardiac implantable electronic devices (CIEDs) on Digital Imaging and Communications in Medicine (DICOM) and smartphone-based chest radiographs. Materials and Methods This institutional review board-approved retrospective study included patients with implantable pacemakers, cardioverter defibrillators, cardiac resynchronization therapy devices, and cardiac monitors who underwent chest radiography between January 2012 and January 2022. A U-Net model with a ResNet-50 backbone was created to classify CIEDs on DICOM and smartphone images. Using 2321 chest radiographs in 897 patients (median age, 76 years [range, 18-96 years]; 625 male, 272 female), CIEDs were categorized into four manufacturers, 27 models, and one "other" category. Five smartphones were used to acquire 11 072 images. Performance was reported using the Dice coefficient on the validation set for segmentation or balanced accuracy on the test set for manufacturer and model classification, respectively. Results The segmentation tool achieved a mean Dice coefficient of 0.936 (IQR: 0.890-0.958). The model had an accuracy of 94.36% (95% CI: 90.93%, 96.84%; 251 of 266) for CIED manufacturer classification and 84.21% (95% CI: 79.31%, 88.30%; 224 of 266) for CIED model classification. Conclusion The proposed deep learning model, trained on both traditional DICOM and smartphone images, showed high accuracy for segmentation and classification of CIEDs on chest radiographs. Keywords: Conventional Radiography, Segmentation Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Júdice de Mattos Farina and Celi in this issue.


Assuntos
Aprendizado Profundo , Desfibriladores Implantáveis , Radiografia Torácica , Smartphone , Humanos , Idoso , Feminino , Masculino , Adolescente , Radiografia Torácica/normas , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Adulto , Adulto Jovem , Marca-Passo Artificial
7.
J Med Internet Res ; 26: e54948, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691404

RESUMO

This study demonstrates that GPT-4V outperforms GPT-4 across radiology subspecialties in analyzing 207 cases with 1312 images from the Radiological Society of North America Case Collection.


Assuntos
Radiologia , Radiologia/métodos , Radiologia/estatística & dados numéricos , Humanos , Processamento de Imagem Assistida por Computador/métodos
8.
Curr Opin Rheumatol ; 36(4): 267-273, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533807

RESUMO

PURPOSE OF REVIEW: To evaluate the current applications and prospects of artificial intelligence and machine learning in diagnosing and managing axial spondyloarthritis (axSpA), focusing on their role in medical imaging, predictive modelling, and patient monitoring. RECENT FINDINGS: Artificial intelligence, particularly deep learning, is showing promise in diagnosing axSpA assisting with X-ray, computed tomography (CT) and MRI analyses, with some models matching or outperforming radiologists in detecting sacroiliitis and markers. Moreover, it is increasingly being used in predictive modelling of disease progression and personalized treatment, and could aid risk assessment, treatment response and clinical subtype identification. Variable study designs, sample sizes and the predominance of retrospective, single-centre studies still limit the generalizability of results. SUMMARY: Artificial intelligence technologies have significant potential to advance the diagnosis and treatment of axSpA, providing more accurate, efficient and personalized healthcare solutions. However, their integration into clinical practice requires rigorous validation, ethical and legal considerations, and comprehensive training for healthcare professionals. Future advances in artificial intelligence could complement clinical expertise and improve patient care through improved diagnostic accuracy and tailored therapeutic strategies, but the challenge remains to ensure that these technologies are validated in prospective multicentre trials and ethically integrated into patient care.


Assuntos
Inteligência Artificial , Espondiloartrite Axial , Aprendizado de Máquina , Humanos , Espondiloartrite Axial/diagnóstico , Aprendizado Profundo , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos
9.
JAMA ; 331(15): 1320-1321, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38497956

RESUMO

This study compares 2 large language models and their performance vs that of competing open-source models.


Assuntos
Inteligência Artificial , Diagnóstico por Imagem , Anamnese , Idioma
11.
J Pathol ; 262(3): 310-319, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38098169

RESUMO

Deep learning applied to whole-slide histopathology images (WSIs) has the potential to enhance precision oncology and alleviate the workload of experts. However, developing these models necessitates large amounts of data with ground truth labels, which can be both time-consuming and expensive to obtain. Pathology reports are typically unstructured or poorly structured texts, and efforts to implement structured reporting templates have been unsuccessful, as these efforts lead to perceived extra workload. In this study, we hypothesised that large language models (LLMs), such as the generative pre-trained transformer 4 (GPT-4), can extract structured data from unstructured plain language reports using a zero-shot approach without requiring any re-training. We tested this hypothesis by utilising GPT-4 to extract information from histopathological reports, focusing on two extensive sets of pathology reports for colorectal cancer and glioblastoma. We found a high concordance between LLM-generated structured data and human-generated structured data. Consequently, LLMs could potentially be employed routinely to extract ground truth data for machine learning from unstructured pathology reports in the future. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glioblastoma , Medicina de Precisão , Humanos , Aprendizado de Máquina , Reino Unido
12.
Acta Radiol Open ; 12(10): 20584601231213740, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034076

RESUMO

Background: The growing role of artificial intelligence (AI) in healthcare, particularly radiology, requires its unbiased and fair development and implementation, starting with the constitution of the scientific community. Purpose: To examine the gender and country distribution among academic editors in leading computer science and AI journals. Material and Methods: This cross-sectional study analyzed the gender and country distribution among editors-in-chief, senior, and associate editors in all 75 Q1 computer science and AI journals in the Clarivate Journal Citations Report and SCImago Journal Ranking 2022. Gender was determined using an open-source algorithm (Gender Guesser™), selecting the gender with the highest calibrated probability. Result: Among 4,948 editorial board members, women were underrepresented in all positions (editors-in-chief/senior editors/associate editors: 14%/18%/17%). The proportion of women correlated positively with the SCImago Journal Rank indicator (ρ = 0.329; p = .004). The U.S., the U.K., and China comprised 50% of editors, while Australia, Finland, Estonia, Denmark, the Netherlands, the U.K., Switzerland, and Slovenia had the highest women editor representation per million women population. Conclusion: Our results highlight gender and geographic disparities on leading computer science and AI journal editorial boards, with women being underrepresented in all positions and a disproportional relationship between the Global North and South.

13.
Joint Bone Spine ; 91(3): 105651, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797827

RESUMO

Rheumatic disorders present a global health challenge, marked by inflammation and damage to joints, bones, and connective tissues. Accurate, timely diagnosis and appropriate management are crucial for favorable patient outcomes. Magnetic resonance imaging (MRI) has become indispensable in rheumatology, but interpretation remains laborious and variable. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), offers a means to improve and advance MRI analysis. This review examines current AI applications in rheumatology MRI analysis, addressing diagnostic support, disease classification, activity assessment, and progression monitoring. AI demonstrates promise, with high sensitivity, specificity, and accuracy, achieving or surpassing expert performance. The review also discusses clinical implementation challenges and future research directions to enhance rheumatic disease diagnosis and management.

14.
Med Sci Educ ; 33(4): 1007-1012, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37546190

RESUMO

The increasing use of artificial intelligence (AI) in medicine is associated with new ethical challenges and responsibilities. However, special considerations and concerns should be addressed when integrating AI applications into medical education, where healthcare, AI, and education ethics collide. This commentary explores the biomedical ethical responsibilities of medical institutions in incorporating AI applications into medical education by identifying potential concerns and limitations, with the goal of implementing applicable recommendations. The recommendations presented are intended to assist in developing institutional guidelines for the ethical use of AI for medical educators and students.

17.
Comput Methods Programs Biomed ; 234: 107505, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003043

RESUMO

BACKGROUND AND OBJECTIVES: Bedside chest radiographs (CXRs) are challenging to interpret but important for monitoring cardiothoracic disease and invasive therapy devices in critical care and emergency medicine. Taking surrounding anatomy into account is likely to improve the diagnostic accuracy of artificial intelligence and bring its performance closer to that of a radiologist. Therefore, we aimed to develop a deep convolutional neural network for efficient automatic anatomy segmentation of bedside CXRs. METHODS: To improve the efficiency of the segmentation process, we introduced a "human-in-the-loop" segmentation workflow with an active learning approach, looking at five major anatomical structures in the chest (heart, lungs, mediastinum, trachea, and clavicles). This allowed us to decrease the time needed for segmentation by 32% and select the most complex cases to utilize human expert annotators efficiently. After annotation of 2,000 CXRs from different Level 1 medical centers at Charité - University Hospital Berlin, there was no relevant improvement in model performance, and the annotation process was stopped. A 5-layer U-ResNet was trained for 150 epochs using a combined soft Dice similarity coefficient (DSC) and cross-entropy as a loss function. DSC, Jaccard index (JI), Hausdorff distance (HD) in mm, and average symmetric surface distance (ASSD) in mm were used to assess model performance. External validation was performed using an independent external test dataset from Aachen University Hospital (n = 20). RESULTS: The final training, validation, and testing dataset consisted of 1900/50/50 segmentation masks for each anatomical structure. Our model achieved a mean DSC/JI/HD/ASSD of 0.93/0.88/32.1/5.8 for the lung, 0.92/0.86/21.65/4.85 for the mediastinum, 0.91/0.84/11.83/1.35 for the clavicles, 0.9/0.85/9.6/2.19 for the trachea, and 0.88/0.8/31.74/8.73 for the heart. Validation using the external dataset showed an overall robust performance of our algorithm. CONCLUSIONS: Using an efficient computer-aided segmentation method with active learning, our anatomy-based model achieves comparable performance to state-of-the-art approaches. Instead of only segmenting the non-overlapping portions of the organs, as previous studies did, a closer approximation to actual anatomy is achieved by segmenting along the natural anatomical borders. This novel anatomy approach could be useful for developing pathology models for accurate and quantifiable diagnosis.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Inteligência Artificial , Redes Neurais de Computação , Tórax
18.
J Med Internet Res ; 25: e43110, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927634

RESUMO

Generative models, such as DALL-E 2 (OpenAI), could represent promising future tools for image generation, augmentation, and manipulation for artificial intelligence research in radiology, provided that these models have sufficient medical domain knowledge. Herein, we show that DALL-E 2 has learned relevant representations of x-ray images, with promising capabilities in terms of zero-shot text-to-image generation of new images, the continuation of an image beyond its original boundaries, and the removal of elements; however, its capabilities for the generation of images with pathological abnormalities (eg, tumors, fractures, and inflammation) or computed tomography, magnetic resonance imaging, or ultrasound images are still limited. The use of generative models for augmenting and generating radiological data thus seems feasible, even if the further fine-tuning and adaptation of these models to their respective domains are required first.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Ultrassonografia
20.
Cancers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428569

RESUMO

Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA