Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 32(1): 85-99, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560268

RESUMO

Spatial attention improves performance on visual tasks, increases neural responses to attended stimuli, and reduces correlated noise in visual cortical neurons. In addition to being visually responsive, many retinotopic visual cortical areas exhibit very slow (<0.1 Hz) endogenous fluctuations in functional magnetic resonance imaging signals. To test whether these fluctuations degrade stimulus representations, thereby impairing visual detection, we recorded functional magnetic resonance imaging responses while human participants performed a target detection task that required them to allocate spatial attention to either a rotating wedge stimulus or a central fixation point. We then measured the effects of spatial attention on response amplitude at the frequency of wedge rotation and on the amplitude of endogenous fluctuations at nonstimulus frequencies. We found that, in addition to enhancing stimulus-evoked responses, attending to the wedge also suppressed slow endogenous fluctuations that were unrelated to the visual stimulus in topographically defined areas in early visual cortex, posterior parietal cortex, and lateral occipital cortex, but not in a nonvisual cortical control region. Moreover, attentional enhancement of response amplitude and suppression of endogenous fluctuations were dissociable across cortical areas and across time. Finally, we found that the amplitude of the stimulus-evoked response was not correlated with a perceptual measure of visual target detection. Instead, perceptual performance was accounted for by the amount of suppression of slow endogenous fluctuations. Our results indicate that the amplitude of slow fluctuations of cortical activity is influenced by spatial attention and suggest that these endogenous fluctuations may impair perceptual processing in topographically organized visual cortical areas.


Assuntos
Atenção/fisiologia , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Adulto Jovem
4.
Cereb Cortex ; 24(1): 49-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23019246

RESUMO

While attention is critical for event memory, debate has arisen regarding the extent to which posterior parietal cortex (PPC) activation during episodic retrieval reflects engagement of PPC-mediated mechanisms of attention. Here, we directly examined the relationship between attention and memory, within and across subjects, using functional magnetic resonance imaging attention-mapping and episodic retrieval paradigms. During retrieval, 4 functionally dissociable PPC regions were identified. Specifically, 2 PPC regions positively tracked retrieval outcomes: lateral intraparietal sulcus (latIPS) indexed graded item memory strength, whereas angular gyrus (AnG) tracked recollection. By contrast, 2 other PPC regions demonstrated nonmonotonic relationships with retrieval: superior parietal lobule (SPL) tracked retrieval reaction time, consistent with a graded engagement of top-down attention, whereas temporoparietal junction displayed a complex pattern of below-baseline retrieval activity, perhaps reflecting disengagement of bottom-up attention. Analyses of retrieval effects in PPC topographic spatial attention maps (IPS0-IPS5; SPL1) revealed that IPS5 and SPL1 exhibited a nonmonotonic relationship with retrieval outcomes resembling that in the SPL region, further suggesting that SPL activation during retrieval reflects top-down attention. While demands on PPC attention mechanisms vary during retrieval attempts, the present functional parcellation of PPC indicates that 2 additional mechanisms (mediated by latIPS and AnG) positively track retrieval outcomes.


Assuntos
Atenção/fisiologia , Memória Episódica , Rememoração Mental/fisiologia , Lobo Parietal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
5.
Vision Res ; 85: 104-12, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23562388

RESUMO

Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas.


Assuntos
Atenção/fisiologia , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa/métodos
6.
Neuroimage ; 53(2): 526-33, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20600961

RESUMO

Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1, IPS2) cortical areas. Additionally, one 5-min run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy.


Assuntos
Atenção/fisiologia , Imageamento por Ressonância Magnética/métodos , Lobo Occipital/anatomia & histologia , Lobo Parietal/anatomia & histologia , Retina/anatomia & histologia , Percepção Espacial/fisiologia , Mapeamento Encefálico , Fixação Ocular , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Estimulação Luminosa , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
7.
J Vis ; 7(10): 10.1-10, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17997679

RESUMO

One of the most important aspects of visual attention is its flexibility; our attentional "window" can be tuned to different spatial scales, allowing us to perceive large-scale global patterns and local features effortlessly. We investigated whether the perception of global and local motion competes for a common attentional resource. Subjects viewed arrays of individual moving Gabors that group to produce a global motion percept when subjects attended globally. When subjects attended locally, on the other hand, they could identify the direction of individual uncrowded Gabors. Subjects were required to devote their attention toward either scale of motion or divide it between global and local scales. We measured direction discrimination as a function of the validity of a precue, which was varied in opposite directions for global and local motion such that when the precue was valid for global motion, it was invalid for local motion and vice versa. There was a trade-off between global and local motion thresholds, such that increasing the validity of precues at one spatial scale simultaneously reduced thresholds at that spatial scale but increased thresholds at the other spatial scale. In a second experiment, we found a similar pattern of results for static-oriented Gabors: Attending to local orientation information impaired the subjects' ability to perceive globally defined orientation and vice versa. Thresholds were higher for orientation compared to motion, however, suggesting that motion discrimination in the first experiment was not driven by orientation information alone but by motion-specific processing. The results of these experiments demonstrate that a shared attentional resource flexibly moves between different spatial scales and allows for the perception of both local and global image features, whether these features are defined by motion or orientation.


Assuntos
Atenção/fisiologia , Percepção de Movimento/fisiologia , Sinais (Psicologia) , Discriminação Psicológica , Humanos , Estimulação Luminosa/métodos , Psicofísica , Limiar Sensorial
8.
Vision Res ; 47(4): 569-79, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17217978

RESUMO

Although second-order motion may be detected by early and automatic mechanisms, some models suggest that perceiving second-order motion requires higher-order processes, such as feature or attentive tracking. These types of attentionally mediated mechanisms could explain the motion aftereffect (MAE) perceived in dynamic displays after adapting to second-order motion. Here we tested whether there is a second-order MAE in the absence of attention or awareness. If awareness of motion, mediated by high-level or top-down mechanisms, is necessary for the second-order MAE, then there should be no measurable MAE if the ability to detect directionality is impaired during adaptation. To eliminate the subject's ability to detect directionality of the adapting stimulus, a second-order drifting Gabor was embedded in a dense array of additional crowding Gabors. We found that a significant MAE was perceived even after adaptation to second-order motion in crowded displays that prevented awareness. The results demonstrate that second-order motion can be passively coded in the absence of awareness and without top-down attentional control.


Assuntos
Adaptação Fisiológica/fisiologia , Pós-Efeito de Figura/fisiologia , Percepção de Movimento/fisiologia , Conscientização , Sensibilidades de Contraste/fisiologia , Humanos , Reconhecimento Visual de Modelos , Estimulação Luminosa/métodos , Psicometria , Psicofísica
9.
Vision Res ; 47(1): 50-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17049580

RESUMO

One of the most fundamental functions of the visual system is to code the positions of objects. Most studies, especially those using fMRI, widely assume that the location of the peak retinotopic activity generated in the visual cortex by an object is the position assigned to that object-this is a simplified version of the local sign hypothesis. Here, we employed a novel technique to compare the pattern of responses to moving and stationary objects and found that the local sign hypothesis is false. By spatially correlating populations of voxel responses to different moving and stationary stimuli in different positions, we recovered the modulation transfer function for moving patterns. The results show that the pattern of responses to a moving object is best correlated with the response to a static object that is located behind the moving one. The pattern of responses across the visual cortex was able to distinguish object positions separated by about 0.25 deg visual angle, equivalent to approximately 0.25 mm cortical distance. We also found that the position assigned to a pattern is not simply dictated by the peak activity-the shape of the luminance envelope and the resulting shape of the population response, including the shape and skew in the response at the edges of the pattern, influences where the visual cortex assigns the object's position. Therefore, visually coded position is not conveyed by the peak but by the overall profile of activity.


Assuntos
Percepção de Movimento/fisiologia , Córtex Visual/fisiologia , Atenção/fisiologia , Discriminação Psicológica/fisiologia , Humanos , Modelos Neurológicos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Psicofísica , Retina/fisiologia
10.
J Vis ; 7(2): 15.1-13, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18217830

RESUMO

Adaptation to first-order (luminance defined) motion produces not only a motion aftereffect but also a position aftereffect, in which a target pattern's perceived location is shifted opposite the direction of adaptation. These aftereffects can occur passively (when the direction of motion adaptation cannot be detected) and remotely (when the target is not at the site of adaptation). Although second-order (contrast defined) motion produces these aftereffects, it is unclear whether they can occur passively or remotely. To address these questions, we conducted two experiments. In the first, we used crowding to remove a local adapter's second-order motion from awareness and still found a significant position aftereffect. In the second experiment, we found that the direction of motion in one region of a crowded array could produce a position aftereffect in an unadapted, spatially separated region of the crowded array. The results suggest that second-order motion influences perceived position over a large spatial range even without awareness.


Assuntos
Adaptação Fisiológica/fisiologia , Sensibilidades de Contraste/fisiologia , Pós-Efeito de Figura/fisiologia , Percepção de Movimento/fisiologia , Mascaramento Perceptivo/fisiologia , Percepção Espacial/fisiologia , Conscientização , Humanos
11.
J Vis ; 7(2): 24.1-11, 2007 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-18217839

RESUMO

It is difficult to recognize an object that falls in the peripheral visual field; it is even more difficult when there are other objects surrounding it. This effect, known as crowding, could be due to interactions between the low-level parts or features of the surrounding objects. Here, we investigated whether crowding can also occur selectively between higher level object representations. Many studies have demonstrated that upright faces, unlike most other objects, are coded holistically. Therefore, in addition to featural crowding within a face (M. Martelli, N. J. Majaj, & D. G. Pelli, 2005), we might expect an additional crowding effect between upright faces due to interference between the higher level holistic representations of these faces. In a series of experiments, we tested this by presenting an upright target face in a crowd of additional upright or inverted faces. We found that recognition was more strongly impaired when the target face was surrounded by upright compared to inverted flanker (distractor) faces; this pattern of results was absent when inverted faces and non-face objects were used as targets. This selective crowding of upright faces by other upright faces only occurred when the target-flanker separation was less than half the eccentricity of the target face, consistent with traditional crowding effects (H. Bouma, 1970; D. G. Pelli, M. Palomares, & N. J. Majaj, 2004). Likewise, the selective interference between upright faces did not occur at the fovea and was not a function of the target-flanker similarity, suggesting that crowding-specific processes were responsible. The results demonstrate that crowding can occur selectively between high-level representations of faces and may therefore occur at multiple stages in the visual system.


Assuntos
Face , Reconhecimento Visual de Modelos/fisiologia , Mascaramento Perceptivo/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Humanos , Campos Visuais
12.
Vision Res ; 46(6-7): 1120-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16359721

RESUMO

Many studies have documented that first-order motion influences perceived position. Here, we show that second-order (contrast defined) motion influences the perceived positions of stationary objects as well. We used a Gabor pattern as our second-order stimulus, which consisted of a drifting sinusoidal contrast modulation of a dynamic random-dot background; this second-order carrier was enveloped by a static Gaussian contrast modulation. Two vertically aligned Gabors had carrier motion in opposite directions. Subjects judged the relative positions of the Gabors' static envelopes. The positions of the Gabors appeared shifted in the direction of the carrier motion, but the effect was narrowly tuned to low temporal frequencies across all tested spatial frequencies. In contrast, first-order (luminance defined) motion shifted perceived positions across a wide range of temporal frequencies, and this differential tuning could not be explained by differences in the visibility of the patterns. The results show that second-order motion detection mechanisms contribute to perceived position. Further, the differential spatial and temporal tuning of the illusion supports the idea that there are distinct position assignment mechanisms for first and second-order motion.


Assuntos
Percepção de Movimento/fisiologia , Ilusões Ópticas/fisiologia , Sensibilidades de Contraste/fisiologia , Humanos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Psicometria , Psicofísica , Limiar Sensorial/fisiologia
13.
Environ Toxicol Chem ; 21(6): 1147-55, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12069297

RESUMO

The free-flowing Clinch and Powell watershed in Virginia, USA, harbors a high number of endemic mussel and fish species but they are declining or going extinct at an alarming rate. To prioritize resource management strategies with respect to these fauna, a geographical information system was developed and various statistical approaches were used to relate human land uses with available fish, macroinvertebrate, and native mussel assemblage data. Both the Ephemeroptera, Plecoptera, Trichoptera (EPT) family-level index, and the fish index of biotic integrity (IBI) were lowest in a subwatershed with the greatest coal mining activity (analysis of variance [ANOVA], p < 0.05). Limited analyses in two other subwatersheds suggested that urban and agricultural land uses within a specified riparian corridor were more related to mussel species richness and fish IBI than land uses in entire catchments. Based on land uses within a riparian corridor of 200 m x 2 km for each biological site in the watershed, fish IBI was inversely related to percent cropland and urban area and positively related to pasture area (stepwise multiple regression, R2 = 0.55, p < 0.05). Sites less than 2 km downstream of urban areas, major highways, or coal mine activities had a significantly lower mean IBI value than those more than 2 km away (ANOVA, p < .05). Land use effects included poorer instream cover and higher substrate embeddedness (t test, p < 0.05). Weaker land use relationships were observed for EPT and mussel species richness. Episodic spills of toxic materials, originating from transportation corridors, mines, and industrial facilities, also have resulted in local extirpations of native species. particularly mussels. The number of co-occurring human activities was directly related to stream elevation in the Clinch River, with more human land uses in headwater areas. Approximately 60% of known U.S. Fish and Wildlife mussel concentration sites in the watershed are located within 2 km of at least two land use sources identified as potentially stressful in our analyses. Our results indicate that a number of land uses and stressors are probably responsible for the decline in native species. However, protection of naturally vegetated riparian corridors may help mitigate some of these effects.


Assuntos
Bivalves , Conservação dos Recursos Naturais , Peixes , Sistemas de Informação Geográfica , Insetos , Mineração , Poluentes da Água/efeitos adversos , Agricultura , Animais , Ecossistema , Monitoramento Ambiental , Indústrias , Dinâmica Populacional , Emissões de Veículos , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...