Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Med Genet A ; 188(7): 2135-2138, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289498

RESUMO

Pathogenic variants in NOTCH2 which encodes a single-pass transmembrane protein have been identified as a cause of several autosomal dominant congenital disorders. In particular, truncating mutations in exon 34 have been found in patients with skeletal abnormalities and dysmorphic features. We describe a patient with a de novo variant in NOTCH2 who displayed features of both Hajdu-Cheney syndrome (HJCYS) and serpentine fibula-polycystic kidney syndrome (SFPKS). The recurrent nonsense variant in exon 34 has been reported in seven other patients with syndromic presentations, making it the most common pathogenic variant for NOTCH2 in congenital disorders. In addition to the core features of HJCYS and SFPKS, there was a gastrointestinal tract malformation of an imperforate anus which has not been reported in patients with pathogenic variants in NOTCH2.


Assuntos
Códon sem Sentido , Síndrome de Hajdu-Cheney , Códon sem Sentido/genética , Éxons/genética , Síndrome de Hajdu-Cheney/genética , Humanos , Mutação , Receptor Notch2/genética
2.
Eur J Hum Genet ; 29(11): 1663-1668, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34413497

RESUMO

Heterozygous missense variants in the WD repeat domain 11 (WDR11) gene are associated with hypogonadotropic hypogonadism in humans. In contrast, knockout of both alleles of Wdr11 in mice results in a more severe phenotype with growth and developmental delay, features of holoprosencephaly, heart defects and reproductive disorders. Similar developmental defects known to be associated with aberrant hedgehog signaling and ciliogenesis have been found in zebrafish after Wdr11 knockdown. We here report biallelic loss-of-function variants in the WDR11 gene in six patients from three independent families with intellectual disability, microcephaly and short stature. The findings suggest that biallelic WDR11 variants in humans result in an overlapping but milder phenotype compared to Wdr11-deficient animals. However, the observed human phenotype differs significantly from dominantly inherited variants leading to hypogonadotropic hypogonadism, suggesting that recessive WDR11 variants result in a clinically distinct entity.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Proteínas de Membrana/genética , Microcefalia/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética , Adulto , Criança , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Mutação de Sentido Incorreto , Linhagem
3.
Arch Dis Child ; 106(1): 38-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978145

RESUMO

OBJECTIVE: To test the utility and diagnostic yield of a medical-exome gene panel for identifying pathogenic variants in Mendelian disorders. METHODS: Next-generation sequencing was performed with the TruSight One gene panel (targeting 4813 genes) followed by MiSeq sequencing on 216 patients who presented with suspected genetic disorders as assessed by their attending physicians. RESULTS: There were 56 pathogenic and 36 likely pathogenic variants across 57 genes identified in 87 patients. Causal mutations were more likely to be truncating and from patients with a prior clinical diagnosis. Another 18 promising variants need further evaluation for more evidence to meet the requirement for potential upgrade to pathogenic. Forty-five of the 92 clinically significant variants were novel. CONCLUSION: The 40.3% positive yield compares favourably with similar studies using either this panel or whole exome sequencing, demonstrating that large gene panels could be a good alternative to whole exome sequencing for quick genetic confirmation of Mendelian disorders.


Assuntos
Anormalidades Múltiplas/genética , Exoma/genética , Predisposição Genética para Doença , Sudeste Asiático , Povo Asiático , Criança , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo , Sequenciamento do Exoma
4.
Arch Dis Child ; 106(1): 31-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32819910

RESUMO

OBJECTIVE: Use next-generation sequencing (NGS) technology to improve our diagnostic yield in patients with suspected genetic disorders in the Asian setting. DESIGN: A diagnostic study conducted between 2014 and 2019 (and ongoing) under the Singapore Undiagnosed Disease Program. Date of last analysis was 1 July 2019. SETTING: Inpatient and outpatient genetics service at two large academic centres in Singapore. PATIENTS: Inclusion criteria: patients suspected of genetic disorders, based on abnormal antenatal ultrasound, multiple congenital anomalies and developmental delay. EXCLUSION CRITERIA: patients with known genetic disorders, either after clinical assessment or investigations (such as karyotype or chromosomal microarray). INTERVENTIONS: Use of NGS technology-whole exome sequencing (WES) or whole genome sequencing (WGS). MAIN OUTCOME MEASURES: (1) Diagnostic yield by sequencing type, (2) diagnostic yield by phenotypical categories, (3) reduction in time to diagnosis and (4) change in clinical outcomes and management. RESULTS: We demonstrate a 37.8% diagnostic yield for WES (n=172) and a 33.3% yield for WGS (n=24). The yield was higher when sequencing was conducted on trios (40.2%), as well as for certain phenotypes (neuromuscular, 54%, and skeletal dysplasia, 50%). In addition to aiding genetic counselling in 100% of the families, a positive result led to a change in treatment in 27% of patients. CONCLUSION: Genomic sequencing is an effective method for diagnosing rare disease or previous 'undiagnosed' disease. The clinical utility of WES/WGS is seen in the shortened time to diagnosis and the discovery of novel variants. Additionally, reaching a diagnosis significantly impacts families and leads to alteration in management of these patients.


Assuntos
Anormalidades Múltiplas/genética , Deficiências do Desenvolvimento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças não Diagnosticadas/genética , Anormalidades Múltiplas/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Feminino , Humanos , Lactente , Masculino , Singapura , Doenças não Diagnosticadas/diagnóstico , Adulto Jovem
5.
Mol Genet Genomic Med ; 7(4): e00581, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30784236

RESUMO

BACKGROUND: Noonan syndrome (NS) is an autosomal dominant disorder that belongs to a group of developmental disorders called RASopathies with overlapping features and multiple causative genes. The aim of the study was to identify mutations underlying this disorder in patients from Southeast Asia and characterize their clinical presentations. METHODS: Patients were identified from the hospital's Genetics clinics after assessment by attending clinical geneticists. A targeted gene panel was used for next-generation sequencing on genomic DNA extracted from the blood samples of 17 patients. RESULTS: Heterozygous missense variants were identified in 13 patients: eight were in PTPN11, three in SOS1, and one each in RIT1 and KRAS. All are known variants that have been reported in patients with NS. Of the 13 patients with identified variants, 10 had short stature, the most common feature for NS. Four of the eight patients with PTPN11 variants had atrial septal defect. Only two had pulmonary stenosis which is reported to be common for PTPN11 mutation carriers. Another two had hypertrophic cardiomyopathy, a feature which is negatively associated with PTPN11 mutations. CONCLUSIONS: Our study provides the mutation and phenotypic spectrum of NS from a new population group. The molecular testing yield of 76% is similar to other studies and shows that the targeted panel approach is useful for identifying genetic mutations in NS which has multiple causative genes. The molecular basis for the phenotypes of the remaining patients remains unknown and would need to be uncovered via sequencing of additional genes or other investigative methods.


Assuntos
Taxa de Mutação , Síndrome de Noonan/genética , Fenótipo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Síndrome de Noonan/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína SOS1/genética , Singapura , Proteínas ras/genética
8.
Eur J Med Genet ; 61(10): 585-595, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29605658

RESUMO

Mutations in CPLANE1 (previously known as C5orf42) cause Oral-Facial-Digital Syndrome type VI (OFD6) as well as milder Joubert syndrome (JS) phenotypes. Seven new cases from five unrelated families diagnosed with pure OFD6 were systematically examined. Based on the clinical manifestations of these patients and those described in the literature, we revised the diagnostic features of OFD6 and include the seven most common characteristics: 1) molar tooth sign, 2) tongue hamartoma and/or lobulated tongue, 3) additional frenula, 4) mesoaxial polydactyly of hands, 5) preaxial polydactyly of feet, 6) syndactyly and/or bifid toe, and 7) hypothalamic hamartoma. By whole or targeted exome sequencing, we identified seven novel germline recessive mutations in CPLANE1, including missense, nonsense, frameshift and canonical splice site variants, all causing OFD6 in these patients. Since CPLANE1 is also mutated in JS patients, we examined whether a genotype-phenotype correlation could be established. We gathered and compared 46 biallelic CPLANE1 mutations reported in 32 JS and 26 OFD6 patients. Since no clear correlation between paired genotypes and clinical outcomes could be determined, we concluded that patient's genetic background and gene modifiers may modify the penetrance and expressivity of CPLANE1 causal alleles. To conclude, our study provides a comprehensive view of the phenotypic range, the genetic basis and genotype-phenotype association in OFD6 and JS. The updated phenotype scoring system together with the identification of new CPLANE1 mutations will help clinicians and geneticists reach a more accurate diagnosis for JS-related disorders.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Mutação em Linhagem Germinativa , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Síndromes Orofaciodigitais/genética , Retina/anormalidades , Anormalidades Múltiplas/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Anormalidades do Olho/diagnóstico , Feminino , Humanos , Lactente , Recém-Nascido , Doenças Renais Císticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Síndromes Orofaciodigitais/diagnóstico , Penetrância
9.
J Hum Genet ; 62(7): 711-715, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28331219

RESUMO

Marfan syndrome is an autosomal dominant disorder affecting mainly the skeletal, ocular and cardiovascular systems. Most cases are caused by mutations in the fibrillin-1 gene (FBN1), although there are some reports on deletions involving FBN1 and other additional genes. We report a male patient who was first evaluated at 4 years of age. Echocardiogram showed a mildly dilated aortic sinus. He also had a history of muscular ventral septal defect which was closed spontaneously and trivial mitral regurgitation. Other phenotypic features include frontal bossing, anteverted ears, joint hyperlaxity, learning disability, skin striae, and height and weight in the >97th centile but no other diagnostic findings of MFS and does not fulfill the revised Ghent criteria. Chromosomal microarray analysis showed a deletion of approximately 36.8 kb at 15q21.1, which starts in intron 6 and ends in intron 9 and includes three FBN1 exons. Sequence analysis of the breakpoint region confirmed the deletion and revealed a concomitant insertion of a retrotransposon within the intron 6/intron 9 region. The intragenic deletion of exons 7-9 was likely the result of a retrotransposition event by a MAST2-SVA element mediated by repetitive sequences.


Assuntos
Éxons/genética , Fibrilina-1/genética , Deleção de Sequência/genética , Seio Aórtico/anormalidades , Sequência de Bases , Criança , Pré-Escolar , Dilatação Patológica , Humanos , Masculino , Análise em Microsséries
11.
Am J Hum Genet ; 99(2): 451-9, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27476655

RESUMO

Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/genética , Anormalidades Craniofaciais/genética , Mutação , Adulto , Proteína Coatomer/metabolismo , Colágeno/metabolismo , Estresse do Retículo Endoplasmático , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome
12.
EBioMedicine ; 5: 211-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27077130

RESUMO

BACKGROUND: In Western cohorts, the prevalence of incidental findings (IFs) or incidentalome, referring to variants in genes that are unrelated to the patient's primary condition, is between 0.86% and 8.8%. However, data on prevalence and type of IFs in Asian population is lacking. METHODS: In 2 cohorts of individuals with genomic sequencing performed in Singapore (total n = 377), we extracted and annotated variants in the 56 ACMG-recommended genes and filtered these variants based on the level of pathogenicity. We then analyzed the precise distribution of IFs, class of genes, related medical conditions, and potential clinical impact. RESULTS: We found a total of 41,607 variants in the 56 genes in our cohort of 377 individuals. After filtering for rare and coding variants, we identified 14 potential variants. After reviewing primary literature, only 4 out of the 14 variants were classified to be pathogenic, while an additional two variants were classified as likely pathogenic. Overall, the cumulative prevalence of IFs (pathogenic and likely pathogenic variants) in our cohort was 1.6%. CONCLUSION: The cumulative prevalence of IFs through genomic sequencing is low and the incidentalome may not be a significant barrier to implementation of genomics for personalized medicine.


Assuntos
Variação Genética , Genoma Humano , Achados Incidentais , Medicina de Precisão , Mapeamento Cromossômico , Bases de Dados Genéticas , Exoma/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Mutação , Singapura
14.
Hum Genomics ; 9: 33, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666243

RESUMO

BACKGROUND: Next-generation sequencing (NGS) has revolutionized genetic research and offers enormous potential for clinical application. Sequencing the exome has the advantage of casting the net wide for all known coding regions while targeted gene panel sequencing provides enhanced sequencing depths and can be designed to avoid incidental findings in adult-onset conditions. A HaloPlex panel consisting of 180 genes within commonly altered chromosomal regions is available for use on both the Ion Personal Genome Machine (PGM) and MiSeq platforms to screen for causative mutations in these genes. METHODS: We used this Haloplex ICCG panel for targeted sequencing of 15 patients with clinical presentations indicative of an abnormality in one of the 180 genes. Sequencing runs were done using the Ion 318 Chips on the Ion Torrent PGM. Variants were filtered for known polymorphisms and analysis was done to identify possible disease-causing variants before validation by Sanger sequencing. When possible, segregation of variants with phenotype in family members was performed to ascertain the pathogenicity of the variant. RESULTS: More than 97% of the target bases were covered at >20×. There was an average of 9.6 novel variants per patient. Pathogenic mutations were identified in five genes for six patients, with two novel variants. There were another five likely pathogenic variants, some of which were unreported novel variants. CONCLUSIONS: In a cohort of 15 patients, we were able to identify a likely genetic etiology in six patients (40%). Another five patients had candidate variants for which further evaluation and segregation analysis are ongoing. Our results indicate that the HaloPlex ICCG panel is useful as a rapid, high-throughput and cost-effective screening tool for 170 of the 180 genes. There is low coverage for some regions in several genes which might have to be supplemented by Sanger sequencing. However, comparing the cost, ease of analysis, and shorter turnaround time, it is a good alternative to exome sequencing for patients whose features are suggestive of a genetic etiology involving one of the genes in the panel.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Diagnóstico Molecular/métodos , Criança , Pré-Escolar , Estudos de Coortes , Bases de Dados Genéticas , Exoma , Feminino , Biblioteca Gênica , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Genoma Humano , Genômica , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Pediatr Cardiol ; 36(8): 1565-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26108892

RESUMO

Left ventricular non-compaction (LVNC) is reported to affect 0.14 % of the pediatric population. The etiology is heterogeneous and includes a wide number of genetic causes. As an illustration, we report two patients with LVNC who were diagnosed with a genetic syndrome. We then review the literature and suggest a diagnostic algorithm to evaluate individuals with LVNC. Case 1 is a 15-month-old girl who presented with hypotonia, global developmental delay, congenital heart defect (including LVNC) and facial dysmorphism. Case 2 is a 7-month-old girl with hypotonia, seizures, laryngomalacia and LVNC. We performed chromosomal microarray for both our patients and detected chromosome 1p36 microdeletion. We reviewed the literature for other genetic causes of LVNC and formulated a diagnostic algorithm, which includes assessment for syndromic disorders, inborn error of metabolism, copy number variants and non-syndromic monogenic disorder associated with LVNC. LVNC is a relatively newly recognized entity, with heterogeneity in underlying etiology. For a systematic approach of evaluating the underlying cause to improve clinical care of these patients, a diagnostic algorithm for genetic evaluation of patients with LVNC is proposed.


Assuntos
Transtornos Cromossômicos/genética , Ventrículos do Coração/anormalidades , Ventrículos do Coração/fisiopatologia , Miocárdio Ventricular não Compactado Isolado/genética , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Deficiências do Desenvolvimento/genética , Eletroencefalografia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Análise de Sequência com Séries de Oligonucleotídeos
16.
Mol Cytogenet ; 7: 32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959201

RESUMO

BACKGROUND: The 15q11-q13 region contains many low copy repeats and is well known for its genomic instability. Several syndromes are associated with genomic imbalance or copy-number-neutral uniparental disomy. We report on two patients: Patient 1 is a boy with developmental delay and autism; and Patient 2 is a girl with developmental delay, hypotonia and dysmorphism. We performed analyses to delineate their dosage in the 15q region, determine whether the patients' dosage correlates with phenotypic severity, and whether genes in the amplified regions are significantly associated with identified functional networks. RESULTS: For the proximal region of 15q, molecular cytogenetic analysis with Agilent oligonucleotide array showed a copy number of 3 for Patient 1 and a copy number of 4 for Patient 2. Fluorescent in situ hybridization analysis of Patient 2 showed two different populations of cells with different marker chromosomes. Methylation analysis of the amplified region showed that the extra copies of small nuclear ribonucleoprotein polypeptide N gene were of maternal origin. Phenotypic severity did not correlate with the size and dosage of 15q, or whether the amplification is interstitial or in the form of a supernumerary marker. Pathway analysis showed that in Patient 2, the main functional networks that are affected by the genes from the duplicated/triplicated regions are developmental disorder, neurological disease and hereditary disease. CONCLUSIONS: The 15q11-q13 gains that were found in both patients could explain their phenotypic presentations. This report expands the cohort of patients for which 15q11-q13 duplications are molecularly characterized.

17.
PLoS One ; 9(4): e93409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24690944

RESUMO

Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322× to 798×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism.


Assuntos
Transtorno do Espectro Autista/genética , Anormalidades Congênitas/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Deficiência Intelectual/genética , Transtorno do Espectro Autista/diagnóstico , Anormalidades Congênitas/diagnóstico , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Variação Genética , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Sítios de Splice de RNA
18.
Am J Med Genet A ; 161A(7): 1702-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686734

RESUMO

We report on a pair of twins with trisomy 12p diagnosed postnatally. The girls were referred for dysmorphism and global developmental delay and have been followed from 10 months of age. They have different levels of mosaicism for both buccal cells and lymphocytes. Although their phenotypic features were similar, there were different degrees of severity which correlate with the different levels of mosaicism.


Assuntos
Deficiências do Desenvolvimento/genética , Doenças em Gêmeos/genética , Mosaicismo , Trissomia/genética , Pré-Escolar , Cromossomos Humanos Par 12/genética , Face/anormalidades , Feminino , Humanos , Lactente , Recém-Nascido , Linfócitos/fisiologia , Masculino , Mucosa Bucal , Gravidez
19.
Gene ; 517(1): 82-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23313878

RESUMO

We describe a boy with a de novo deletion of 15.67 Mb spanning 3q22.1q24. He has bilateral micropthalmia, ptosis, cleft palate, global developmental delay and brain, skeletal and cardiac abnormalities. In addition, he has bilateral inguinal hernia and his right kidney is absent. We compare his phenotype with seven other patients with overlapping and molecularly defined interstitial 3q deletions. This patient has some phenotypic features that are not shared by the other patients. More cases with smaller deletions defined by high resolution aCGH will enable better genotype-phenotype correlations and prioritizing of candidate genes for the identification of pathways and disease mechanisms.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Estudos de Associação Genética , Transtornos do Crescimento/congênito , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Cariotipagem , Masculino , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Gene ; 499(1): 182-5, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22426292

RESUMO

We report a girl with Rubinstein-Taybi syndrome (RSTS) who was found to have copy number loss on 16p13.3 by array-CGH. She has developmental delay and other features of RSTS including downslanting palpebral fissures, a prominent nose with the nasal septum extending below the alae nasi, broad thumbs and big toes, postaxial polydactyly of the right foot and constipation from birth. We report the junction sequence across the breakpoint region for a microdeletion in RSTS. The sequencing results also showed that the deletion was 81.4kb involving three genes DNASE 1, TRAP 1, and CREBBP.


Assuntos
Proteína de Ligação a CREB/genética , Síndrome de Rubinstein-Taybi/genética , Deleção de Sequência , Adolescente , Sequência de Bases , Criança , Hibridização Genômica Comparativa , Análise Mutacional de DNA/métodos , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Deleção de Sequência/fisiologia , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...