Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6538)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33833098

RESUMO

Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized Chlorella variabilis FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer.


Assuntos
Carboxiliases/química , Carboxiliases/metabolismo , Chlorella/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Alcanos/metabolismo , Substituição de Aminoácidos , Aminoácidos/metabolismo , Bicarbonatos/metabolismo , Biocatálise , Dióxido de Carbono/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Descarboxilação , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Ligação de Hidrogênio , Luz , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Fótons , Conformação Proteica , Temperatura
2.
Biochim Biophys Acta ; 1507(1-3): 100-14, 2001 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11687210

RESUMO

This mini-review focuses on recent experimental results and questions, which came up since the last more comprehensive reviews on the subject. We include a brief discussion of the different techniques used for time-resolved studies of electron transfer in photosystem I (PS I) and relate the kinetic results to new structural data of the PS I reaction centre.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Clorofila/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Metabolismo Energético , Complexos de Proteínas Captadores de Luz , Oxirredução , Complexo de Proteína do Fotossistema I , Vitamina K 1/química
3.
J Biol Chem ; 276(40): 37299-306, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11489879

RESUMO

The core of photosystem I (PS1) is composed of the two related integral membrane polypeptides, PsaA and PsaB, which bind two symmetrical branches of cofactors, each consisting of two chlorophylls and a phylloquinone, that potentially link the primary electron donor and the tertiary acceptor. In an effort to identify amino acid residues near the phylloquinone binding sites, all tryptophans and histidines that are conserved between PsaA and PsaB in the region of the 10th and 11th transmembrane alpha-helices were mutated in Chlamydomonas reinhardtii. The mutant PS1 reaction centers appear to assemble normally and possess photochemical activity. An electron paramagnetic resonance (EPR) signal attributed to the phylloquinone anion radical (A(1)(-)) can be observed either transiently or after illumination of reaction centers with pre-reduced iron-sulfur clusters. Mutation of PsaA-Trp(693) to Phe resulted in an inability to photo-accumulate A(1)(-), whereas mutation of the analogous tryptophan in PsaB (PsaB-Trp(673)) did not produce this effect. The PsaA-W693F mutation also produced spectral changes in the time-resolved EPR spectrum of the P(700)(+) A(1)(-) radical pair, whereas the analogous mutation in PsaB had no observable effect. These observations indicate that the A(1)(-) phylloquinone radical observed by EPR occupies the phylloquinone-binding site containing PsaA-Trp(693). However, mutation of either tryptophan accelerated charge recombination from the terminal Fe-S clusters.


Assuntos
Chlamydomonas/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Vitamina K 1/isolamento & purificação , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons , Immunoblotting , Cinética , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I , Espectrofotometria Atômica , Fatores de Tempo , Triptofano
4.
Proc Natl Acad Sci U S A ; 98(25): 14368-73, 2001 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-11762431

RESUMO

Two symmetrically positioned redox active tyrosine residues are present in the photosystem II (PSII) reaction center. One of them, TyrZ, is oxidized in the ns-micros time scale by P680+ and reduced rapidly (micros to ms) by electrons from the Mn complex. The other one, TyrD, is stable in its oxidized form and seems to play no direct role in enzyme function. Here, we have studied electron donation from these tyrosines to the chlorophyll cation (P680+) in Mn-depleted PSII from plants and cyanobacteria. In particular, a mutant lacking TyrZ was used to investigate electron donation from TyrD. By using EPR and time-resolved absorption spectroscopy, we show that reduced TyrD is capable of donating an electron to P680+ with t1/2 approximately equal to 190 ns at pH 8.5 in approximately half of the centers. This rate is approximately 10(5) times faster than was previously thought and similar to the TyrZ donation rate in Mn-depleted wild-type PSII (pH 8.5). Some earlier arguments put forward to rationalize the supposedly slow electron donation from TyrD (compared with that from TyrZ) can be reassessed. At pH 6.5, TyrZ (t1/2 = 2-10 micros) donates much faster to P680+ than does TyrD (t1/2 > 150 micros). These different rates may reflect the different fates of the proton released from the respective tyrosines upon oxidation. The rapid rate of electron donation from TyrD requires at least partial localization of P680+ on the chlorophyll (PD2) that is located on the D2 side of the reaction center.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Tirosina/análogos & derivados , Tirosina/química , Clorofila/química , Cianobactérias/química , Cianobactérias/genética , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Radicais Livres/química , Genes Bacterianos , Luz , Mutação , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Espectrofotometria
5.
Nature ; 405(6786): 586-90, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10850720

RESUMO

Amino-acid radicals play key roles in many enzymatic reactions. Catalysis often involves transfer of a radical character within the protein, as in class I ribonucleotide reductase where radical transfer occurs over 35 A, from a tyrosyl radical to a cysteine. It is currently debated whether this kind of long-range transfer occurs by electron transfer, followed by proton release to create a neutral radical, or by H-atom transfer, that is, simultaneous transfer of electrons and protons. The latter mechanism avoids the energetic cost of charge formation in the low dielectric protein, but it is less robust to structural changes than is electron transfer. Available experimental data do not clearly discriminate between these proposals. We have studied the mechanism of photoactivation (light-induced reduction of the flavin adenine dinucleotide cofactor) of Escherichia coli DNA photolyase using time-resolved absorption spectroscopy. Here we show that the excited flavin adenine dinucleotide radical abstracts an electron from a nearby tryptophan in 30 ps. After subsequent electron transfer along a chain of three tryptophans, the most remote tryptophan (as a cation radical) releases a proton to the solvent in about 300 ns, showing that electron transfer occurs before proton dissociation. A similar process may take place in photolyase-like blue-light receptors.


Assuntos
Desoxirribodipirimidina Fotoliase/metabolismo , Flavina-Adenina Dinucleotídeo/química , Reparo do DNA , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/genética , Transporte de Elétrons , Ativação Enzimática , Escherichia coli/enzimologia , Flavina-Adenina Dinucleotídeo/análogos & derivados , Cinética , Fotoquímica , Prótons , Proteínas Recombinantes/química , Triptofano/análogos & derivados , Triptofano/química , Raios Ultravioleta
6.
Biochemistry ; 38(37): 12124-37, 1999 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-10508417

RESUMO

Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.


Assuntos
Proteínas de Bactérias , Chlorobi/química , Chlorobi/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons , Cinética , Lasers , Complexos de Proteínas Captadores de Luz , Oxirredução , Fotólise , Análise Espectral/métodos , Fatores de Tempo , Raios Ultravioleta , Vitamina K/química , Vitamina K/metabolismo
7.
Proc Natl Acad Sci U S A ; 96(10): 5423-7, 1999 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-10318899

RESUMO

Light-induced electron transfer reactions leading to the fully reduced, catalytically competent state of the flavin adenine dinucleotide (FAD) cofactor have been studied by flash absorption spectroscopy in DNA photolyase from Anacystis nidulans. The protein, overproduced in Escherichia coli, was devoid of the antenna cofactor, and the FAD chromophore was present in the semireduced form, FADH., which is inactive for DNA repair. We show that after selective excitation of FADH. by a 7-ns laser flash, fully reduced FAD (FADH-) is formed in less than 500 ns by electron abstraction from a tryptophan residue. Subsequently, a tyrosine residue is oxidized by the tryptophanyl radical with t(1)/(2) = 50 microseconds. The amino acid radicals were identified by their characteristic absorption spectra, with maxima at 520 nm for Trp. and 410 nm for TyrO. The newly discovered electron transfer between tyrosine and tryptophan occurred for approximately 40% of the tryptophanyl radicals, whereas 60% decayed by charge recombination with FADH- (t(1)/(2) = 1 ms). The tyrosyl radical can also recombine with FADH- but at a much slower rate (t(1)/(2) = 76 ms) than Trp. In the presence of an external electron donor, however, TyrO. is rereduced efficiently in a bimolecular reaction that leaves FAD in the fully reduced state FADH-. These results show that electron transfer from tyrosine to Trp. is an essential step in the process leading to the active form of photolyase. They provide direct evidence that electron transfer between tyrosine and tryptophan occurs in a native biological reaction.


Assuntos
Cianobactérias/enzimologia , Desoxirribodipirimidina Fotoliase/química , Triptofano/química , Tirosina/química , Transporte de Elétrons , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/química , Radicais Livres/química , Cinética , Lasers , Luz , Mercaptoetanol/farmacologia , Oxirredução , Proteínas Recombinantes/química
8.
FEBS Lett ; 447(2-3): 315-7, 1999 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-10214969

RESUMO

Forward electron transfer in photosystem I from Synechocystis sp. PCC 6803 has been studied in the picosecond time range with transient absorption spectroscopy in the blue and near-UV spectral regions. From the direct measurement, at 380-390 nm, of the reduction kinetics of the phylloquinone secondary acceptor A1 and from the absence of spectral evolution between 100 ps and 2 ns, we conclude that electron transfer, from the chlorophyll a primary acceptor A0, to A1 occurs directly and completely with a time constant of about 30 ps.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Cianobactérias/metabolismo , Transporte de Elétrons , Cinética , Oxirredução , Espectrofotometria Ultravioleta
9.
Biochemistry ; 37(26): 9466-76, 1998 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-9649330

RESUMO

Electron-transfer reactions following the formation of P700(+)A1- have been studied in isolated Photosystem I complexes from Synechococcus elongatus between 300 and 5 K by flash absorption spectroscopy. (1) In the range from 300 to 200 K, A1- is reoxidized by electron transfer to the iron-sulfur cluster FX. The rate slows down with decreasing temperature, corresponding to an activation energy of 220 +/- 20 meV in this temperature range. Analyzing the temperature dependence of the rate in terms of nonadiabatic electron-transfer theory, one obtains a reorganization energy of about 1 eV and an edge-to-edge distance between A1 and FX of about 8 A assuming the same distance dependence of the electron-transfer rate as in purple bacterial reaction centers. (2) At temperatures below 150 K, different fractions of PS I complexes attributed to frozen conformational substates can be distinguished. A detailed analysis at 77 K gave the following results: (a) In about 45%, flash-induced electron transfer is limited to the formation and decay of the secondary pair P700(+)A1-. The charge recombination occurs with a t1/2 of about 170 micros. (b) In about 20%, the state P700(+)FX- is formed and recombines with complex kinetics (t1/2 = 5-100 ms). (c) In about 35%, irreversible formation of P700(+)FA- or P700(+)FB- is possible. (3) The transition from efficient forward electron transfer at higher temperatures to heterogeneous photochemistry at low temperatures has been investigated in different glass-forming solvents. The yield of forward electron transfer to the iron-sulfur clusters decreases in a narrow temperature interval. The temperature of the half-maximal effect varies between different solvents and appears to be correlated with their liquid to glass transition. It is proposed that reorganization processes in the surroundings of the reactants which are required for the stabilization of the charge-separated state become arrested near the glass transition. This freezing of protein motions and/or solvent reorganization may affect electron-transfer reactions through changes in the free-energy gap and the reorganization energy. (4) The rate of charge recombination between P700(+) and A1- increases slightly (about 1.5-fold) when the temperature is decreased from 300 to 5 K. This charge recombination characterized by a large driving force is much less influenced by the solvent properties than the forward electron-transfer steps from A1- to FX and FA/B.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Temperatura , Temperatura Baixa , Cianobactérias/química , Cianobactérias/metabolismo , Transporte de Elétrons , Temperatura Alta , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Cinética , Oxirredução , Fotólise , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Espectrofotometria
10.
Biophys J ; 74(6): 3173-81, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9635770

RESUMO

Photoinduced electron transfer in photosystem I (PS I) proceeds from the excited primary electron donor P700 (a chlorophyll a dimer) via the primary acceptor A0 (chlorophyll a) and the secondary acceptor A1 (phylloquinone) to three [4Fe-4S] clusters, Fx, FA, and FB. Prereduction of the iron-sulfur clusters blocks electron transfer beyond A1. It has been shown previously that, under such conditions, the secondary pair P700+A1- decays by charge recombination with t1/2 approximately 250 ns at room temperature, forming the P700 triplet state (3P700) with a yield exceeding 85%. This reaction is unusual, as the secondary pair in other photosynthetic reaction centers recombines much slower and forms directly the singlet ground state rather than the triplet state of the primary donor. Here we studied the temperature dependence of secondary pair recombination in PS I from the cyanobacterium Synechococcus sp. PCC6803, which had been illuminated in the presence of dithionite at pH 10 to reduce all three iron-sulfur clusters. The reaction P700+A1- --> 3P700 was monitored by flash absorption spectroscopy. With decreasing temperature, the recombination slowed down and the yield of 3P700 decreased. In the range between 303 K and 240 K, the recombination rates could be described by the Arrhenius law with an activation energy of approximately 170 meV. Below 240 K, the temperature dependence became much weaker, and recombination to the singlet ground state became the dominating process. To explain the fast activated recombination to the P700 triplet state, we suggest a mechanism involving efficient singlet to triplet spin evolution in the secondary pair, thermally activated repopulation of the more closely spaced primary pair P700+A0- in a triplet spin configuration, and subsequent fast recombination (intrinsic rate on the order of 10(9) s(-1)) forming 3P700.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Clorofila/metabolismo , Clorofila A , Cianobactérias/metabolismo , Dimerização , Transporte de Elétrons , Proteínas Ferro-Enxofre/metabolismo , Cinética , Luz , Complexos de Proteínas Captadores de Luz , Oxirredução , Complexo de Proteína do Fotossistema I , Temperatura , Termodinâmica , Fatores de Tempo , Vitamina K 1/metabolismo
11.
Biochim Biophys Acta ; 1363(3): 175-81, 1998 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-9518598

RESUMO

Membrane fragments from Heliobacillus mobilis were characterized using time resolved optical spectroscopy and photovoltage measurements in order to detect a possible participation of menaquinone (MQ), functioning analogous to the phylloquinone A1 in photosystem I, as intermediate in electron transfer from the primary acceptor A0 to the iron-sulfur cluster FX in the photosynthetic reaction center. The spectroscopic data obtained exclude that electron transfer from a semiquinone anion MQ- to FX occurred in the time window from 2 ns to 4 micros, where it would be expected in analogy to photosystem I. In the case of a prereduction of FX, only the primary pair P798+A0- was formed. The photovoltage data yielded a single kinetic phase with a time constant of 700 ps for the transmembrane electron transfer beyond A0; the relative amplitude of this phase suggests that it reflects electron transfer from A0- to FX.


Assuntos
Bactérias/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Membrana Celular/metabolismo , Transporte de Elétrons , Vitamina K/metabolismo
12.
EMBO J ; 17(1): 50-60, 1998 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-9427740

RESUMO

The Photosystem I complex catalyses the transfer of an electron from lumenal plastocyanin to stromal ferredoxin, using the energy of an absorbed photon. The initial photochemical event is the transfer of an electron from the excited state of P700, a pair of chlorophylls, to a monomer chlorophyll serving as the primary electron acceptor. We have performed a systematic survey of conserved histidines in the last six transmembrane segments of the related polytopic membrane proteins PsaA and PsaB in the green alga Chlamydomonas reinhardtii. These histidines, which are present in analogous positions in both proteins, were changed to glutamine or leucine by site-directed mutagenesis. Double mutants in which both histidines had been changed to glutamine were screened for changes in the characteristics of P700 using electron paramagnetic resonance, Fourier transform infrared and visible spectroscopy. Only mutations in the histidines of helix 10 (PsaA-His676 and PsaB-His656) resulted in changes in spectroscopic properties of P700, leading us to conclude that these histidines are most likely the axial ligands to the P700 chlorophylls.


Assuntos
Clorofila/química , Histidina/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Animais , Chlamydomonas reinhardtii/química , Clorofila/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Complexos de Proteínas Captadores de Luz , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Biochemistry ; 34(14): 4814-27, 1995 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-7718588

RESUMO

Absorbance difference spectra of the transient states in photosystem II (PS II) have been examined in the Qv absorption region between 660 and 700 nm. The P680+Pheo-/P680Pheo, 3P680/P680, and P680+QA-/P680QA spectra were measured in O2-evolving PS II core complexes from Synechococcus and PS II-enriched membrane fragments from spinach. The low-temperature absorbance difference spectra vary only slightly between both PS II preparations. The 3P680/P680 spectrum is characterized by a bleaching at 685 nm at 25 K and indicates weak exciton coupling with neighboring pigment(s). We conclude that P680 absorbs at 685 nm in more intact PS II preparations at cryogenic temperature. The difference spectra of the radical pairs are strongly temperature dependent. At low temperature the P680+QA-/P680QA- spectrum exhibits the strongest bleaching at 675 nm whereas the P680+Phe-/P680Pheo spectra show two distinct bleaching bands at 674 and 684 nm. It is suggested that an electrochronic red shift resulting in a bleaching at 675 nm and an absorbance increase at about 682 nm dominates the spectral features of the charge-separated states. On the basis of the present results and those in the literature, we conclude that the interactions between the pigments and especially the organization of the primary donor must be quite different in PS II compared to bacterial reaction centers, although the basic structural arrangement of the pigments might be similar. Spectral data obtained with samples in the presence of singly and doubly reduced QA indicate that the primary photochemistry in PS II is not strongly influenced by the redox state of QA at low temperature and confirm the results of the accompanying paper [Van Mieghem, F. J. E., Brettel, K., Hillmann, B., Kamlowski, A., Rutherford, A. W., & Schlodder, E. (1995) Biochemistry 34, 4798-4813]. The spectra of the primary radical pair and the reaction center triplet obtained with more intact PS II preparations differ widely from those of D1/D2/cyt b-559 complexes. In the latter sample, where 3P680 formation results in a bleaching at 680 nm, the P680+Pheo-/P680Pheo spectrum shows only one broad bleaching band at about 680 nm, and the main bleaching due to photoaccumulation of Pheo- at 77 K appears at 682 nm instead of 685 nm in PS II core complexes. This indicates that the removal of the core antenna which is accompanied by the loss of QA causes also structural changes of the reaction center.


Assuntos
Cianobactérias/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Radicais Livres , Cinética , Oxirredução , Fotoquímica , Análise Espectral , Temperatura
14.
Biochemistry ; 34(14): 4798-813, 1995 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-7718587

RESUMO

Recombination reactions of the primary radical pair in photosystem II (PS II) have been studied in the nanosecond to millisecond time scales by flash absorption spectroscopy. Samples in which the first quinone acceptor (QA) was in the semiquinone form (QA-) or in the doubly reduced state (presumably QAH2) were used. The redox state of QA and the long-lived triplet state of the primary electron donor chlorophyll (3P680) were monitored by EPR. The following results were obtained at cryogenic temperatures (around 20 K). (1) the primary radical pair, P680+Pheo-, is formed with a high yield irrespective of the redox state of QA. (2) The decay of the primary pair is faster with QA- than with QAH2 and could be described biexponentially with t1/2 approximately 20 ns (approximately 65%)/150 ns (approximately 35%) and t1/2 approximately 60 ns (approximately 35%)/250 ns (approximately 65%), respectively. The different kinetics may be due to electrostatic and/or magnetic effects of QA- on charge recombination or due to conformational changes caused by the double reduction treatment. (3) The yield of the triplet state 3P680 was high both with QA- and QAH2. (4) The triplet decay was much faster with QA- [t1/2 approximately 2 microseconds (approximately 50%)/20 microseconds (approximately 50%)] than with QAH2 [t1/2 approximately 1 ms (approximately 65%)/3 ms (approximately 35%)]. The short lifetime of the triplet with QA- explains why it was not detected earlier. The mechanism of triplet quenching in the presence of QA- is not understood; however it may represent a protective process in PS II. (5) Almost identical data were obtained for PS II-enriched membranes from spinach and PS II core preparations from Synechococcus. Room temperature optical studies were performed on the Synechococcus preparation. In samples containing sodium dithionite to form QA- in the dark, EPR controls showed that multiple excitation flashes given at room temperature led to a decrease of the QA-Fe2+ signal, indicating double reduction of QA. During the first few flashes, QA- was still present in the large majority of the centers. In this case, the yield of the primary pair at room temperature was around 50%, and its decay could be described monoexponentially with t1/2 approximately 8 ns (a slightly better fit was obtained with two exponentials: t1/2 approximately 4 ns (approximately 80%)/25 ns (approximately 20%).(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Cianobactérias/química , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Spinacia oleracea/química , Temperatura
15.
Photosynth Res ; 45(3): 183-93, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24301530

RESUMO

The kinetic and spectroscopic properties of the secondary electron acceptor A1 were determined by flash absorption spectroscopy at room and cryogenic temperatures in a Photosystem I (PS I) core devoid of the iron-sulfur clusters FX, FB and FA. It was shown earlier (Warren, P.V., Golbeck, J.H. and Warden, J.T. (1993) Biochemistry 32: 849-857) that the majority of the flash-induced absorbance increase at 820 nm, reflecting formation of P700(+), decays with a t1/2 of 10 µs due to charge recombination between P700(+) and A1 (-). Following A1 (-) directly around 380 nm, where absorbance changes due to the formation of P700(+) are negligible, two major decay components were resolved in this study with t1/2 of ≈ 10 µs and 110 µs at an amplitude ratio of ≈ 2.5:1. The difference spectra between 340 and 490 nm of the two kinetic phases are highly similar, showing absorbance increases from 340 to 400 nm characteristic of the one-electron reduction of the phylloquinone A1. When measured at 10 K, the flash-induced absorbance changes around 380 nm can be fitted with two decay phases of t1/2 ≈ 15 µs and 150 µs at an amplitude ratio ≈ 1:1. The difference spectra of both kinetic phases from 340 to 400 nm are similar to those determined at 298 K and are therefore attributed to charge recombination in the pair P700(+)A1 (-). These results indicate that the backreaction between P700(+) and A1 (-) is multiphasic when FX, FB and FA are removed, and only slightly temperature dependent in the range of 298 K to 10 K.

16.
Biochemistry ; 33(39): 11789-97, 1994 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-7918396

RESUMO

The electron transfer in photosystem I (PS I) from the secondary acceptor A1 to the iron-sulfur centers is studied by X-band transient EPR with a time resolution of approximately 50 ns. Results are presented for a series of different PS I preparations from the cyanobacterium Synechococcus 6301 ranging from whole cells to core particles in which the iron-sulfur centers have been successively removed. In addition, results from PS I preparations from spinach and the cyanobacterium Synechocystis 6803 are presented. In all samples containing iron-sulfur centers, two consecutive spin-polarized EPR spectra are observed. The two signals have previously been assigned to the charge-separated states P700+.A1-. and P700+.(FeS)-, where (FeS) is one of the three iron-sulfur centers, FX, FA, or FB [Bock, C., van der Est, A., Brettel, K., & Stehlik, D. (1989) FEBS Lett. 247, 91-96]. In agreement with this, the second spectrum is not observed in the sample in which the iron-sulfur centers have been removed. For (P700-FX), core particles which do not contain FA and FB, the second spectrum can unambiguously be assigned to the pair P700+.FX-. In all samples containing FX, the transition from the first to the second spectrum occurs with t1/e approximately 280 ns (t1/2 approximately 190 ns) both in the presence and absence of FA and FB, which strongly suggests that this phase reflects electron transfer from A1-. to FX in intact PS I.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Cianobactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Vitamina K 1/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Modelos Químicos , Complexo de Proteína do Fotossistema I , Spinacia oleracea/metabolismo , Frações Subcelulares/metabolismo
17.
Biochemistry ; 32(31): 7846-54, 1993 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-8347589

RESUMO

Forward electron transfer at room temperature from the secondary acceptor A1 (phylloquinone) to the iron-sulfur centers FX, FB, and FA was studied by flash-absorbance spectroscopy in different photosystem I (PSI) preparations in order to resolve the controversy concerning the kinetics of A1-reoxidation during forward electron transfer [half times of 15 ns [Mathis, P., & Sétif, P. (1988) FEBS Lett. 237, 65-68] and 200 ns [Brettel, K. (1988) FEBS Lett. 239, 93-98] were reported for PSI particles from spinach and Synechococcus sp., respectively]. The monophasic kinetics with t1/2 approximately 200 ns could be reproduced with PSI particles from another cyanobacterium (Synechocystis sp. PCC 6803). In so-called PSI-beta particles from spinach, containing all membrane-bound electron carriers and approximately 65 antenna chlorophylls per reaction center, the flash-induced absorbance increase around 370 nm, which is indicative of the formation of A1-, decays biphasically with t1/2 approximately 25 and 150 ns and relative amplitudes of approximately 65 and 35%, respectively. The difference spectra of these two phases were determined between 330 and 500 nm; they agree well below 380 nm but deviate significantly at higher wavelengths. The spectrum of the sum of the two phases is similar to the spectrum of the 200-ns phase in cyanobacteria. Upon chemical reduction of the terminal acceptors FA and FB, only the 25-ns phase is conserved and the absorbance changes remaining after its completion decay with t1/2 approximately 250 microseconds.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Vitamina K 1/metabolismo , Transporte de Elétrons , Lasers , Modelos Químicos , Complexo de Proteína do Fotossistema I , Análise Espectral
18.
Biochemistry ; 32(18): 4842-7, 1993 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-8387818

RESUMO

Spin-polarized EPR spectra of the triplet state of P700, the primary electron donor in photosystem I (PS I), have been measured for the first time at room temperature. The measurements were performed on intact PS I from Synechococcus sp. after prereduction of all iron-sulfur centers and on vitamin K1 depleted PS I from Synechocystis 6803. The two preparations give similar spectra with a polarization pattern which indicates that the triplet state is formed via recombination of a radical pair. The axial and nonaxial zero-field splitting (zfs) parameters are found to be magnitude of D = (284 +/- 15) x 10(-4) cm-1 and magnitude of E = (22 +/- 3) x 10(-4) cm-1, respectively. The E-value is 42% smaller than in monomeric chlorophyll a, while the D-value is nearly the same. Measurements of the Synechocystis 6803 sample at 4.5 K yielded zfs parameters which are identical with those of the chlorophyll monomer, in agreement with previous results. In order to explain this behavior, it is proposed that the triplet excitation is delocalized over the two halves of a chlorophyll dimer at room temperature but appears localized on one half at low temperature. The observed zfs parameters are obtained if (1) the magnetic z-axes of the two chlorophylls are collinear, (2) the magnetic y-axes (and x-axes) of the two chlorophylls make an angle of approximately 55 degrees with each other, and (3) the admixture of charge-transfer states to 3P700 is negligible.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Clorofila/metabolismo , Cianobactérias/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/metabolismo , Complexos de Proteínas Captadores de Luz , Modelos Químicos , Oxirredução , Complexo de Proteína do Fotossistema I , Fatores de Tempo , Vitamina K 1/deficiência
19.
Photosynth Res ; 10(3): 453-71, 1986 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24435394

RESUMO

The reaction sequence between the primary electron acceptor, the oxidized Chlorophyll-aII, and the terminal electron donor, the water splitting enzyme system S, is being described in the range from nanoseconds to milliseconds. For the cleavage of water Chlorophyll-aII (+) extracts four electrons in four turnovers from the enzyme system S responsible for the water oxidation. For each extraction the electron is moved step by step along the chain that connects the Chlorophyll-aII center with that of S. Beginning with the transfer from the immediate donor, D1, to Chl-aII (+), the subsequent transfer from D2 to D1 (+) ends in the electron transfer from S to D2 (+). This final act establishes in S the oxidizing equivalent, probably in the form of oxidized manganese. Coupled with these acts is an intrinsic proton release and a surplus charge formation. After the generation of the 4th oxidizing equivalent in a concerted final action the evolution of O2 from water takes place. Correlations between the events are described quantitatively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...