Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 29: 196-207, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25777134

RESUMO

Until now, pyridoxine (PN), the most commonly supplemented B6 vitamer for animals and humans, is chemically synthesized for commercial purposes. Thus, the development of a microbial fermentation process is of great interest for the biotech industry. Recently, we constructed a Bacillus subtilis strain that formed significant amounts of PN via a non-native deoxyxylulose 5'-phosphate-(DXP)-dependent vitamin B6 pathway. Here we report the optimization of the condensing reaction of this pathway that consists of the 4-hydroxy-l-threonine-phosphate dehydrogenase PdxA, the pyridoxine 5'-phosphate synthase PdxJ and the native DXP synthase, Dxs. To allow feeding of high amounts of 4-hydroxy-threonine (4-HO-Thr) that can be converted to PN by B. subtilis overexpressing PdxA and PdxJ, we first adapted the bacteria to tolerate the antimetabolite 4-HO-Thr. The adapted bacteria produced 28-34mg/l PN from 4-HO-Thr while the wild-type parent produced only 12mg/l PN. Moreover, by expressing different pdxA and pdxJ alleles in the adapted strain we identified a better combination of PdxA and PdxJ enzymes than reported previously, and the resulting strain produced 65mg/l PN. To further enhance productivity mutants were isolated that efficiently take up and convert deoxyxylulose (DX) to DXP, which is incorporated into PN. Although these mutants were very efficient to convert low amount of exogenous DX, at higher DX levels they performed only slightly better. The present study uncovered several enzymes with promiscuous activity and it revealed that host metabolic pathways compete with the heterologous pathway for 4-HO-Thr. Moreover, the study revealed that the B. subtilis genome is quite flexible with respect to adaptive mutations, a property, which is very important for strain engineering.


Assuntos
Antimetabólitos/metabolismo , Bacillus subtilis , Engenharia Metabólica , Piridoxina/biossíntese , Treonina/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/biossíntese , Desidrogenases de Carboidrato/genética , Oxirredutases/biossíntese , Oxirredutases/genética , Treonina/biossíntese
2.
Metab Eng ; 25: 38-49, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24972371

RESUMO

Vitamin B6 is a designation for the vitamers pyridoxine, pyridoxal, pyridoxamine, and their respective 5'-phosphates. Pyridoxal 5'-phosphate, the biologically most-important vitamer, serves as a cofactor for many enzymes, mainly active in amino acid metabolism. While microorganisms and plants are capable of synthesizing vitamin B6, other organisms have to ingest it. The vitamer pyridoxine, which is used as a dietary supplement for animals and humans is commercially produced by chemical processes. The development of potentially more cost-effective and more sustainable fermentation processes for pyridoxine production is of interest for the biotech industry. We describe the generation and characterization of a Bacillus subtilis pyridoxine production strain overexpressing five genes of a non-native deoxyxylulose 5'-phosphate-dependent vitamin B6 pathway. The genes, derived from Escherichia coli and Sinorhizobium meliloti, were assembled to two expression cassettes and introduced into the B. subtilis chromosome. in vivo complementation assays revealed that the enzymes of this pathway were functionally expressed and active. The resulting strain produced 14mg/l pyridoxine in a small-scale production assay. By optimizing the growth conditions and co-feeding of 4-hydroxy-threonine and deoxyxylulose the productivity was increased to 54mg/l. Although relative protein quantification revealed bottlenecks in the heterologous pathway that remain to be eliminated, the final strain provides a promising basis to further enhance the production of pyridoxine using B. subtilis.


Assuntos
Bacillus subtilis/fisiologia , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Piridoxina/biossíntese , Transdução de Sinais/genética , Vitamina B 6/biossíntese , Xilulose/análogos & derivados , Proliferação de Células/fisiologia , Piridoxina/genética , Regulação para Cima/genética , Vitamina B 6/genética , Vitamina B 6/metabolismo , Xilulose/metabolismo
3.
Int J Syst Evol Microbiol ; 53(Pt 1): 231-238, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12656178

RESUMO

A comprehensive taxonomic re-evaluation was performed on the marine, zeaxanthin-producing bacterium formerly classified as [Favobacterium] sp. strain R-1 512 (ATCC 21588). This strain, together with two other previously described marine isolates, [Flavobacterium] strain R-1506 and Paracoccus sp. strain MBIC 3966, were found to comprise a new species of the genus Paracoccus. The name Paracoccus zeaxanthinifaciens sp. nov. is proposed, with ATCC 21588T (= R-1512T =LMG 21293T) designated as the type strain.


Assuntos
Paracoccus/classificação , Paracoccus/metabolismo , beta Caroteno/análogos & derivados , beta Caroteno/biossíntese , Composição de Bases , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Paracoccus/genética , Fenótipo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie , Xantofilas , Zeaxantinas
4.
J Org Chem ; 67(3): 871-5, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11856031

RESUMO

Cultures of the zeaxanthin-producing bacterium Paracoccus species strain PTA-3335 (formerly Flavobacterium) were grown with supplements of (13)C-labeled glucose. Zeaxanthin was isolated and analyzed by (13)C NMR spectroscopy. The data showed that the isoprenoid precursors of zeaxanthin were biosynthesized via the mevalonate pathway. The microorganism was found to utilize glucose mainly via the Entner-Doudoroff pathway.


Assuntos
Ácido Mevalônico/metabolismo , Paracoccus/metabolismo , beta Caroteno/biossíntese , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Xantofilas , Zeaxantinas , beta Caroteno/análogos & derivados , beta Caroteno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...