Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(36): 25257-25270, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39186512

RESUMO

As synthesized, nanocrystal surfaces are typically covered in coordinating organic ligands, and the degree of packing and order of these ligands are ongoing questions in the field of colloidal nanocrystals, particularly in the solution state. Recently, isothermal titration calorimetry coupled with 1H NMR has been used to probe ligand exchanges on colloidal quantum dots, revealing the importance of the composition of the ligand shell on exchange thermodynamics. Previous work has shown that the geometry and length of a ligand's aliphatic chain can influence the thermodynamics of exchange. This has been attributed to interligand interactions, and the use of a modified Ising model simulation to account for these collective effects has been critical in describing these reactions. In this report, we explore the reaction between indium phosphide quantum dots and zinc chloride on a size series of nanocrystals capped with two different lengths of aliphatic, straight-chain carboxylate ligands to investigate the effect that nanocrystal size has on these interligand interactions. We demonstrate that interligand interactions increase as the nanocrystal size increases, changing the thermodynamics of the ligand exchange reaction. Critically, we show that a self-consistent model of these ligand exchanges does not fit the data without the use of a phase transition term in the model and that the strength of this phase transition depends on the nanocrystal size. Combined with solution state X-ray diffraction, these results provide indirect evidence that ligands are ordered on nanocrystals in the solution state.

2.
Proc Natl Acad Sci U S A ; 121(18): e2307633121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648471

RESUMO

Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA