Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Discov Immunol ; 3(1): kyad029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567291

RESUMO

Abatacept, a co-stimulatory blocker comprising the extracellular portion of human CTLA-4 linked to the Fc region of IgG1, is approved for the treatment of rheumatoid arthritis. By impairing the interaction between CD28 on T cells and CD80/CD86 on APCs, its mechanisms of action include the suppression of follicular T helper cells (preventing the breach of self-tolerance in B cells), inhibition of cell cycle progression holding T cells in a state described as 'induced naïve' and reduction in DC conditioning. However, less is known about how long these inhibitory effects might last, which is a critical question for therapeutic use in patients. Herein, employing a murine model of OVA-induced DTH, we demonstrate that the effect of abatacept is short-lived in vivo and that the inhibitory effects diminish markedly when treatment is ceased.

2.
Discov Immunol ; 2(1): kyac012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567066

RESUMO

Public interest in vaccines is at an all-time high following the SARS-CoV-2 global pandemic. Currently, over 6 billion doses of various vaccines are administered globally each year. Most of these vaccines contain Aluminium-based adjuvants (alum), which have been known and used for almost 100 years to enhance vaccine immunogenicity. However, despite the historical use and importance of alum, we still do not have a complete understanding of how alum works to drive vaccine immunogenicity. In this article, we critically review studies investigating the mechanisms of action of alum adjuvants, highlighting some of the misconceptions and controversies within the area. Although we have emerged with a clearer understanding of how this ubiquitous adjuvant works, we have also highlighted some of the outstanding questions in the field. While these may seem mainly of academic interest, developing a more complete understanding of these mechanisms has the potential to rationally modify and improve the immune response generated by alum-adjuvanted vaccines.

3.
Immunother Adv ; 2(1): ltac020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268500

RESUMO

Currently, treatments for rheumatoid arthritis (RA) are focussed on management of disease symptoms rather than addressing the cause of disease, which could lead to remission and cure. Central to disease development is the induction of autoimmunity through a breach of self-tolerance. Developing approaches to re-establish antigen specific tolerance is therefore an important emerging area of RA research. A crucial step in this research is to employ appropriate animal models to test prospective antigen specific immunotherapies. In this short communication, we evaluate our previously developed model of antigen specific inflammatory arthritis in which ovalbumin-specific T cell receptor transgenic T cells drive breach of tolerance to endogenous antigens to determine the impact that the timing of therapy administration has upon disease progression. Using antigen feeding to induce tolerance we demonstrate that administration prior to articular challenge results in a reduced disease score as evidenced by pathology and serum antibody responses. By contrast, feeding antigen after initiation of disease had the opposite effect and resulted in the exacerbation of pathology. These preliminary data suggest that the timing of antigen administration may be key to the success of tolerogenic immunotherapies. This has important implications for the timing of potential tolerogenic therapies in patients.

4.
mBio ; 13(4): e0102422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35924840

RESUMO

The entry routes and translocation mechanisms of microorganisms or particulate materials into the central nervous system remain obscure We report here that Streptococcus pneumoniae (pneumococcus), or polystyrene microspheres of similar size, appear in the meninges of the dorsal cortex of mice within minutes of inhaled delivery. Recovery of viable bacteria from dissected tissue and fluorescence microscopy show that up to at least 72 h, pneumococci and microspheres were predominantly found in the outer of the two meninges: the pachymeninx. No pneumococci were found in blood or cerebrospinal fluid. Intravital imaging through the skull, aligned with flow cytometry showed recruitment and activation of LysM+ cells in the dorsal pachymeninx at 5 and 10 hours following intranasal infection. Imaging of the cribriform plate suggested that both pneumococci and microspheres entered through the foramina via an inward flow of fluid connecting the nose to the pachymeninx. Our findings bring new insight into the varied mechanisms of pneumococcal invasion of the central nervous system, but they are also pertinent to the delivery of drugs to the brain and the entry of airborne particulate matter into the cranium. IMPORTANCE Using two-photon imaging, we show that pneumococci translocate from the nasopharynx to the dorsal meninges of a mouse in the absence of any bacteria found in blood or cerebrospinal fluid. Strikingly, this takes place within minutes of inhaled delivery of pneumococci, suggesting the existence of an inward flow of fluid connecting the nasopharynx to the meninges, rather than a receptor-mediated mechanism. We also show that this process is size dependent, as microspheres of the same size as pneumococci can translocate along the same pathway, while larger size microspheres cannot. Furthermore, we describe the host response to invasion of the outer meninges. Our study provides a completely new insight into the key initial events that occur during the translocation of pneumococci directly from the nasal cavity to the meninges, with relevance to the development of intranasal drug delivery systems and the investigations of brain damage caused by inhaled air pollutants.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Sistema Nervoso Central , Osso Etmoide , Meninges/microbiologia , Camundongos , Nasofaringe/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia
5.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35192549

RESUMO

Mechanisms governing entry and exit of immune cells into and out of inflamed joints remain poorly understood. We sought herein to identify the key molecular pathways regulating such migration. Using murine models of inflammation in conjunction with mice expressing a photoconvertible fluorescent protein, we characterized the migration of cells from joints to draining lymph nodes and performed RNA-Seq analysis on isolated cells, identifying genes associated with migration and retention. We further refined the gene list to those specific for joint inflammation. RNA-Seq data revealed pathways and genes previously highlighted as characteristic of rheumatoid arthritis in patient studies, validating the methodology. Focusing on pathways associated with cell migration, adhesion, and movement, we identified genes involved in the retention of immune cells in the inflamed joint, namely junctional adhesion molecule A (JAM-A), and identified a role for such molecules in T cell differentiation in vivo. Thus, using a combination of cell-tracking approaches and murine models of inflammatory arthritis, we identified genes, pathways, and anatomically specific tissue signatures regulating cell migration in a variety of inflamed sites. This skin- and joint-specific data set will be an invaluable resource for the identification of therapeutic targets for arthritis and other inflammatory disorders.


Assuntos
Artrite Reumatoide , Animais , Movimento Celular/genética , Humanos , Inflamação/genética , Camundongos , Pele/patologia
7.
Discov Immunol ; 1(1): kyac008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38566907

RESUMO

One of the earliest signs of dysregulation of the homeostatic process of fibrosis, associated with pathology in chronic conditions such as rheumatoid arthritis, is the overexpression of collagen type III (COL-3). Critically, there is still relatively little known regarding the identity of the cell types expressing the gene encoding COL-3 (Col3a1). Identifying and characterizing Col3a1-expressing cells during the development of fibrosis could reveal new targets for the diagnosis and treatment of fibrosis-related pathologies. As such, a reporter mouse expressing concomitantly Col3a1 and mKate-2, a fluorescent protein, was generated. Using models of footpad inflammation, we demonstrated its effectiveness as a tool to measure the expression of COL-3 during the repair process and provided an initial characterization of some of the stromal and immune cells responsible for Col3a1 expression.

8.
Semin Immunol ; 56: 101544, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34895823

RESUMO

Purified vaccine antigens offer important safety and reactogenicity advantages compared with live attenuated or whole killed virus and bacterial vaccines. However, they require the addition of adjuvants to induce the magnitude, duration and quality of immune response required to achieve protective immunity. Aluminium salts have been used as adjuvants in vaccines for almost a century. In the literature, they are often referred to as aluminium-based adjuvants (ABAs), or aluminium salt-containing adjuvants or more simply "alum". All these terms are used to group aluminium suspensions that are very different in terms of atomic composition, size, and shape. They differ also in stability, antigen-adsorption, and antigen-release kinetics. Critically, these parameters also have a profound effect on the character and magnitude of the immune response elicited. Recent findings suggest that, by reducing the size of aluminium from micro to nanometers, a more effective adjuvant is obtained, together with the ability to sterile filter the vaccine product. However, the behaviour of aluminium nanoparticles in vaccine formulations is different from microparticles, requiring specific formulation strategies, as well as a more detailed understanding of how formulation influences the immune response generated. Here we review the current state of art of aluminium nanoparticles as adjuvants, with a focus on their immunobiology, preparation methods, formulation optimisation and stabilisation.


Assuntos
Nanopartículas , Vacinas , Adjuvantes Imunológicos/farmacologia , Alumínio , Humanos
11.
Ann Rheum Dis ; 80(10): 1268-1277, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380700

RESUMO

Increasingly earlier identification of individuals at high risk of rheumatoid arthritis (RA) (eg, with autoantibodies and mild symptoms) improves the feasibility of preventing or curing disease. The use of antigen-specific immunotherapies to reinstate immunological self-tolerance represent a highly attractive strategy due to their potential to induce disease resolution, in contrast to existing approaches that require long-term treatment of underlying symptoms.Preclinical animal models have been used to understand disease mechanisms and to evaluate novel immunotherapeutic approaches. However, models are required to understand critical processes supporting disease development such as the breach of self-tolerance that triggers autoimmunity and the progression from asymptomatic autoimmunity to joint pain and bone loss. These models would also be useful in evaluating the response to treatment in the pre-RA period.This review proposes that focusing on immune processes contributing to initial disease induction rather than end-stage pathological consequences is essential to allow development and evaluation of novel immunotherapies for early intervention. We will describe and critique existing models in arthritis and the broader field of autoimmunity that may fulfil these criteria. We will also identify key gaps in our ability to study these processes in animal models, to highlight where further research should be targeted.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Autoimunidade/imunologia , Imunoterapia , Tolerância a Antígenos Próprios/imunologia , Animais , Anticorpos Antiproteína Citrulinada/imunologia , Artrite Experimental/prevenção & controle , Artrite Experimental/terapia , Artrite Reumatoide/prevenção & controle , Artrite Reumatoide/terapia , Doenças Assintomáticas , Dessensibilização Imunológica , Modelos Animais de Doenças , Progressão da Doença , Tolerância Imunológica/imunologia , Camundongos , Ratos , Fator Reumatoide/imunologia
12.
Front Immunol ; 12: 669856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986757

RESUMO

Effective tolerogenic intervention in Rheumatoid Arthritis (RA) will rely upon understanding the evolution of articular antigen specific CD4 T cell responses. TCR clonality of endogenous CD4 T cell infiltrates in early inflammatory arthritis was assessed to monitor evolution of the TCR repertoire in the inflamed joint and associated lymph node (LN). Mouse models of antigen-induced breach of self-tolerance and chronic polyarthritis were used to recapitulate early and late phases of RA. The infiltrating endogenous, antigen experienced CD4 T cells in inflamed joints and LNs were analysed using flow cytometry and TCRß sequencing. TCR repertoires from inflamed late phase LNs displayed increased clonality and diversity compared to early phase LNs, while inflamed joints remained similar with time. Repertoires from late phase LNs accumulated clones with a diverse range of TRBV genes, while inflamed joints at both phases contained clones expressing similar TRBV genes. Repertoires from LNs and joints at the late phase displayed reduced CDR3ß sequence overlap compared to the early disease phase, however the most abundant clones in LNs accumulate in the joint at the later phase. The results indicate CD4 T cell repertoire clonality and diversity broadens with progression of inflammatory arthritis and is first reflected in LNs before mirroring in the joint. These observations imply that antigen specific tolerogenic therapies could be more effective if targeted at earlier phases of disease when CD4 T cell clonality is least diverse.


Assuntos
Artrite Experimental/imunologia , Linfócitos T CD4-Positivos/imunologia , Evolução Clonal , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Articulações/imunologia , Linfonodos/imunologia , Tolerância a Antígenos Próprios , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Progressão da Doença , Feminino , Articulações/metabolismo , Linfonodos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Tolerância a Antígenos Próprios/genética , Fatores de Tempo
13.
Immunol Lett ; 235: 32-40, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000305

RESUMO

The junctional adhesion molecule-A (JAM-A) is an adhesion molecule present in the surface of several cell types, such as endothelial cells and leukocytes as well as Dendritic Cells (DC). Given the potential relevance of JAM-A in diverse pathological conditions such as inflammatory diseases and cancer, we investigated the role of JAM-A in CD4+ T cell priming. We demonstrate that JAM-A is present in the immunological synapse formed between T cells and DC during priming. Furthermore, an antagonistic anti-JAM-A mAb could disrupt the interaction between CD4+ T cell and DC. Antagonism of JAM-A also attenuated T cell activation and proliferation with a decrease in T-bet expression and increased IL-6 and IL-17 secretion. These findings demonstrate a functional role for JAM-A in interactions between CD4+ T cells and DCs during T cell priming as a positive regulator of Th1 differentiation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Receptores de Superfície Celular/metabolismo , Células Th1/citologia , Células Th1/imunologia , Autoimunidade , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Adesão Celular/imunologia , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Comunicação Celular , Técnicas de Cocultura , Citocinas/biossíntese , Suscetibilidade a Doenças , Humanos , Sinapses Imunológicas/metabolismo , Imunofenotipagem , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Células Th1/metabolismo
14.
Front Immunol ; 11: 602094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324419

RESUMO

The junctional adhesion molecule-A (JAM-A) is a cell surface adhesion molecule expressed on platelets, epithelial cells, endothelial cells and leukocytes (e. g. monocytes and dendritic cells). JAM-A plays a relevant role in leukocyte trafficking and its therapeutic potential has been studied in several pathological conditions due to its capacity to induce leukocyte migration out of inflamed sites or infiltration into tumor sites. However, disruption of JAM-A pathways may worsen clinical pathology in some cases. As such, the effects of JAM-A manipulation on modulating immune responses in the context of different diseases must be better understood. In this mini-review, we discuss the potential of JAM-A as a therapeutic target, summarizing findings from studies manipulating JAM-A in the context of inflammatory diseases (e.g. autoimmune diseases) and cancer and highlighting described mechanisms.


Assuntos
Doenças Autoimunes/metabolismo , Autoimunidade , Quimiotaxia de Leucócito , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Molécula A de Adesão Juncional/metabolismo , Neoplasias/metabolismo , Evasão Tumoral , Animais , Doenças Autoimunes/imunologia , Humanos , Inflamação/imunologia , Neoplasias/imunologia , Transdução de Sinais
15.
Front Immunol ; 11: 1597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793231

RESUMO

Malaria is caused by apicomplexan parasites of the genus Plasmodium. While infection continues to pose a risk for the majority of the global population, the burden of disease mainly resides in Sub-Saharan Africa. Although immunity develops against disease, this requires years of persistent exposure and is not associated with protection against infection. Repeat infections occur due to the parasite's ability to disrupt or evade the host immune responses. However, despite many years of study, the mechanisms of this disruption remain unclear. Previous studies have demonstrated a parasite-induced failure in dendritic cell (DCs) function affecting the generation of helper T cell responses. These T cells fail to help B cell responses, reducing the production of antibodies that are necessary to control malaria infection. This review focuses on our current understanding of the effect of Plasmodium parasite on DC function, DC-T cell interaction, and T cell activation. A better understanding of how parasites disrupt DC-T cell interactions will lead to new targets and approaches to reinstate adaptive immune responses and enhance parasite immunity.


Assuntos
Comunicação Celular , Células Dendríticas/imunologia , Interações Hospedeiro-Parasita/imunologia , Malária/imunologia , Malária/parasitologia , Plasmodium/imunologia , Linfócitos T/imunologia , Animais , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune , Tolerância Imunológica , Imunomodulação , Estágios do Ciclo de Vida , Fígado/imunologia , Fígado/metabolismo , Fígado/parasitologia , Plasmodium/fisiologia , Pele/imunologia , Pele/metabolismo , Pele/parasitologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
16.
Front Immunol ; 11: 1250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595652

RESUMO

African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Pele/parasitologia , Trypanosoma/parasitologia , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/transmissão , Animais , Humanos , Pele/imunologia
17.
Sci Rep ; 10(1): 2058, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029768

RESUMO

Humanised xenograft models allow for the analysis of human tissue within a physiological environment in vivo. However, current models often rely on the angiogenesis and ingrowth of recipient vasculature to perfuse tissues, preventing analysis of biological processes and diseases involving human blood vessels. This limits the effectiveness of xenografts in replicating human physiology and may lead to issues with translating findings into human research. We have designed a xenograft model of human vasculature to address this issue. Human subcutaneous fat was cultured in vitro to promote blood vessel outgrowth prior to implantation into immunocompromised mice. We demonstrate that implants survived, retained human vasculature and anastomosed with the circulatory system of the recipient mouse. Significantly, by performing transplants into the ear pinna, this system enabled intravital observation of xenografts by multiphoton microscopy, allowing us to visualise the steps leading to vascular cytoadherence of erythrocytes infected with the human parasite Plasmodium falciparum. This model represents a useful tool for imaging the interactions that occur within human tissues in vivo and permits visualization of blood flow and cellular recruitment in a system which is amenable to intervention for various studies in basic biology together with drug evaluation and mechanism of action studies.


Assuntos
Vasos Sanguíneos/transplante , Pavilhão Auricular/transplante , Xenoenxertos/transplante , Gordura Subcutânea/irrigação sanguínea , Adulto , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Pavilhão Auricular/irrigação sanguínea , Feminino , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/fisiologia , Humanos , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Técnicas de Cultura de Tecidos , Transplante Heterólogo/métodos , Adulto Jovem
18.
Front Immunol ; 10: 598, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024523

RESUMO

Initiation of adaptive immunity involves distinct migratory cell populations coming together in a highly dynamic and spatially organized process. However, we lack a detailed spatiotemporal map of these events due to our inability to track the fate of cells between anatomically distinct locations or functionally identify cell populations as migratory. We used photo-convertible transgenic mice (Kaede) to spatiotemporally track the fate and composition of the cell populations that leave the site of priming and enter the draining lymph node to initiate immunity. We show that following skin priming, the lymph node migratory population is principally composed of cells recruited to the site of priming, with a minor contribution from tissue resident cells. In combination with the YAe/Eα system, we also show that the majority of cells presenting antigen are CD103+CD11b+ dendritic cells that were recruited to the site of priming during the inflammatory response. This population has previously only been described in relation to mucosal tissues. Comprehensive phenotypic profiling of the cells migrating from the skin to the draining lymph node by mass cytometry revealed that in addition to dendritic cells, the migratory population also included CD4+ and CD8+ T cells, B cells, and neutrophils. Taking our complex spatiotemporal data set, we then generated a model of cell migration that quantifies and describes the dynamics of arrival, departure, and residence times of cells at the site of priming and in the draining lymph node throughout the time-course of the initiation of adaptive immunity. In addition, we have identified the mean migration time of migratory dendritic cells as they travel from the site of priming to the draining lymph node. These findings represent an unprecedented, detailed and quantitative map of cell dynamics and phenotypes during immunization, identifying where, when and which cells to target for immunomodulation in autoimmunity and vaccination strategies.


Assuntos
Células Dendríticas/imunologia , Linfócitos/imunologia , Modelos Imunológicos , Imunidade Adaptativa , Animais , Apresentação de Antígeno , Movimento Celular , Citometria de Fluxo , Humanos , Imunofenotipagem , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Pele/imunologia , Análise Espaço-Temporal
19.
Parasite Immunol ; 41(2): e12609, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30525202

RESUMO

African trypanosomes (Trypanosoma brucei spp.) are extracellular, hemoflagellate, protozoan parasites. Mammalian infection begins when the tsetse fly vector injects trypanosomes into the skin during blood feeding. The trypanosomes then reach the draining lymph nodes before disseminating systemically. Intravital imaging of the skin post-tsetse fly bite revealed that trypanosomes were observed both extravascularly and intravascularly in the lymphatic vessels. Whether host-derived cues play a role in the attraction of the trypanosomes towards the lymphatic vessels to aid their dissemination from the site of infection is not known. Since chemokines can mediate the attraction of leucocytes towards the lymphatics, in vitro chemotaxis assays were used to determine whether chemokines might also act as chemoattractants for trypanosomes. Although microarray data suggested that the chemokines CCL8, CCL19, CCL21, CCL27 and CXCL12 were highly expressed in mouse skin, they did not stimulate the chemotaxis of T brucei. Certain chemokines also possess potent antimicrobial properties. However, none of the chemokines tested exerted any parasiticidal effects on T brucei. Thus, our data suggest that host-derived chemokines do not act as chemoattractants for T brucei. Identification of the mechanisms used by trypanosomes to establish host infection will aid the development of novel approaches to block disease transmission.


Assuntos
Quimiocinas/imunologia , Quimiotaxia , Trypanosoma brucei brucei/imunologia , Animais , Humanos , Camundongos , Pele/imunologia , Pele/parasitologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé
20.
Front Immunol ; 9: 2684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524434

RESUMO

Dendritic cell activation of CD4 T cells in the lymph node draining a site of infection or vaccination is widely considered the central event in initiating adaptive immunity. The accepted dogma is that this occurs by stimulating local activation and antigen acquisition by dendritic cells, with subsequent lymph node migration, however the generalizability of this mechanism is unclear. Here we show that in some circumstances antigen can bypass the injection site inflammatory response, draining freely and rapidly to the lymph nodes where it interacts with subcapsular sinus (SCS) macrophages resulting in their death. Debris from these dying SCS macrophages is internalized by monocytes recruited from the circulation. This coordinated response leads to antigen presentation by monocytes and interactions with naïve CD4 T cells that can drive the initiation of T cell and B cell responses. These studies demonstrate an entirely novel pathway leading to initiation of adaptive immune responses in vivo.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/citologia , Linfonodos/citologia , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Monócitos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...