Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 16(1): 41-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299217

RESUMO

Steady-state axisymmetric simulations using the Reynolds-Averaged Navier-Stokes equations have been carried out in order to optimize the performance of a Chemical, Biological, Radiological, and Nuclear (CBRN) canister filter for its use in a powered air-purifying respirator (PAPR). Alterations have been made to the shape of the canister, the spacing of the rear wall of the canister with regard to the carbon filter, and the bracketing between (i) the particulate filter and the carbon bed and (ii) the carbon bed and the canister wall. The pressure drops across the canister and the residence time distribution at the rear of the carbon bed have been analyzed in detail based on an extensive parametric analysis involving the aforementioned variations. It has been demonstrated that the non-uniform porosity profile of the carbon bed resulted in alternating regions of high and low velocity close to the canister wall, providing a possible route for breakthrough. Designs, which included a bracket at the rear of the carbon bed, blocked this route and consequently had a longer minimum mean residence time than those, which did not. It has also been shown that the spacing between the carbon bed and the canister rear wall had a large impact on both residence time and pressure drop. In cases where the carbon backed directly onto the canister rear wall flow in the axial direction from the outside wall toward the canister axis resulted in far greater pressure drop and a reduction in minimum mean residence time within the carbon bed.


Assuntos
Filtros de Ar , Desenho de Equipamento , Dispositivos de Proteção Respiratória , Carbono/química , Hidrodinâmica , Exposição por Inalação/prevenção & controle , Modelos Teóricos
2.
J Magn Reson ; 193(1): 32-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18450487

RESUMO

Fabrics which are water repellent and repellent to other liquids are often constructed using multiple layers of material. Such a construction is preferable to a single layer of a liquid-repellent textile because, under the action of an applied pressure, ingress of a liquid through the first layer can be halted by the second or subsequent layers. In the quantitative investigation of this problem, current techniques provide limited information on the progress and distribution of the liquid as it ingresses into a fabric. Moreover, many techniques require that the material is delaminated prior to analysis, and cannot be conducted in real time to measure the progress of a liquid through the textile substrate. In this work we demonstrate that unilateral NMR, which allows signal to be collected from a volume of interest in a material residing above the instrument, can be a powerful tool to quantitatively monitor the ingress of a liquid through a layered sample exhibiting pronounced heterogeneities in repellency. A known volume of oil was placed on the top of a model textile sample composed of three 80 microm thick layers. Spatially resolved one dimensional vertical NMR profiles of the system were acquired as a function of the pressure vertically applied to the top of the sample. These profiles show that the absolute liquid volume present in each layer of textile can routinely be measured within 4 min with a spatial resolution of 15 microm. If each individual layer exhibits different repellency to the test liquid, the complexity of the dynamics of the ingress can be investigated in great detail. An elegant application of the unilateral instrument was obtained in which the sensitive volume matched the region of interest of the individual layers of the textile under investigation.

3.
Chem Commun (Camb) ; (3): 406-8, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15645053

RESUMO

A substrate-independent method for Diels-Alder chemistry at solid surfaces is described for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA