Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(2): 023506, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648119

RESUMO

The Toroidal Magnetized System device has been significantly upgraded to enable development of various wall conditioning techniques, including methods based on ion and electron cyclotron (IC/EC) range of frequency plasmas, and to complement plasma-wall interaction research in tokamaks and stellarators. The toroidal magnetic field generated by 16 coils can reach its maximum of 125 mT on the toroidal axis. The EC system is operated at 2.45 GHz with up to 6 kW forward power. The IC system can couple up to 6 kW in the frequency range of 10 MHz-50 MHz. The direct current glow discharge system is based on a graphite anode with a maximum voltage of 1.5 kV and a current of 6 A. A load-lock system with a vertical manipulator allows exposure of material samples. A number of diagnostics have been installed: single- and triple-pin Langmuir probes for radial plasma profiles, a time-of-flight neutral particle analyzer capable of detecting neutrals in the energy range of 10 eV-1000 eV, and a quadrupole mass spectrometer and video systems for plasma imaging. The majority of systems and diagnostics are controlled by the Siemens SIMATIC S7 system, which also provides safety interlocks.

2.
Phys Rev Lett ; 123(2): 025002, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386539

RESUMO

For the first time, the optimized stellarator Wendelstein 7-X has operated with an island divertor. An operation regime in hydrogen was found in which the total plasma radiation approached the absorbed heating power without noticeable loss of stored energy. The divertor thermography recorded simultaneously a strong reduction of the heat load on all divertor targets, indicating almost complete power detachment. This operation regime was stably sustained over several energy confinement times until the preprogrammed end of the discharge. The plasma radiation is mainly due to oxygen and is located at the plasma edge. This plasma scenario is reproducible and robust at various heating powers, plasma densities, and gas fueling locations. These experimental results show that the island divertor concept actually works and displays good power dissipation potential, producing a promising exhaust concept for the stellarator reactor line.

3.
Rev Sci Instrum ; 83(10): 10D511, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23130790

RESUMO

A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 µm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

4.
Rev Sci Instrum ; 83(10): 10D517, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23130791

RESUMO

In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380-960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365-720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D(2), ND) and main chamber and divertor recycling (typically Dα, Dß, and Dγ). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

5.
Rev Sci Instrum ; 83(10): 10D728, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23130797

RESUMO

With installation of the ITER-like wall in JET a major diagnostic upgrade to measure the neutral gas pressure and composition in the sub-divertor region has been completed, to characterise retention and outgassing of the new metallic first wall. The upgrade includes two new magnetically shielded systems consisting of sensitive capacitance manometers and residual gas analysers, both capable of providing data during plasma operation. These enable absolute pressure and gas composition measurements (pressure range: 10(-5)-10(-1) mbar, mass range: 1-200 amu, respectively) and have been used to characterise the neutral gas behaviour under various plasma conditions.

6.
Phys Rev Lett ; 102(4): 045007, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19257434

RESUMO

The impact of edge localized modes (ELMs) carrying energies of up to 450 kJ on carbon erosion in the JET inner divertor is assessed by means of time resolved measurements using an in situ quartz microbalance diagnostic. The inner target erosion is strongly nonlinearly dependent on the ELM energy: a single 400 kJ ELM produces the same carbon erosion as ten 150 kJ events. The ELM-induced enhanced erosion is attributed to the presence of codeposited carbon-deuterium layers on the inner divertor target, which are thermally decomposed under the impact of ELMs.

7.
Phys Rev Lett ; 96(3): 035004, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16486718

RESUMO

The magnetic-field perturbation produced by the dynamic ergodic divertor in TEXTOR changes the topology of the magnetic field in the plasma edge, creating an open chaotic system. The perturbation spectrum contains only a few dominant harmonics and therefore it can be described by an analytical model. The modeling is performed in the vacuum approximation without assuming a backreaction of the plasma and does not rely on any experimentally obtained parameters. It is shown that this vacuum approximation predicts in many details the experimentally observed plasma structure. Several experiments have been performed to prove that the plasma edge behavior is defined mostly by the magnetic topology of the perturbed volume. The change in the transport can be explained with the knowledge of only the magnetic structures; i.e., the ergodic pattern dominates the plasma properties.

8.
Phys Rev Lett ; 94(1): 015003, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698091

RESUMO

The first results of the Dynamic Ergodic Divertor in TEXTOR, when operating in the m/n=3/1 mode configuration, are presented. The deeply penetrating external magnetic field perturbation of this configuration increases the toroidal plasma rotation. Staying below the excitation threshold for the m/n=2/1 tearing mode, this toroidal rotation is always in the direction of the plasma current, even if the toroidal projection of the rotating magnetic field perturbation is in the opposite direction. The observed toroidal rotation direction is consistent with a radial electric field, generated by an enhanced electron transport in the ergodic layers near the resonances of the perturbation. This is an effect different from theoretical predictions, which assume a direct coupling between rotating perturbation and plasma to be the dominant effect of momentum transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...