Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 140: 108992, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567455

RESUMO

Decondensation and the subsequent release of chromatin from specific immune cells in response to inflammatory stimuli is a highly conserved aspect of the innate immune system and leads to the formation of extracellular traps, observable in nearly all forms of multicellular life. This process is known as ETosis, with the release of DNA and its associated antimicrobial proteins physically capturing and neutralizing pathogens following an infection or tissue damage. Despite the universality of this response, data concerning extracellular traps in non-model organisms is limited, with most invertebrate studies doing little more than proving their existence due to difficulties in stimulation and high interindividual variability in trap production. This study provides a novel, simple, and inexpensive method for the consistent stimulation of extracellular traps in eastern oyster (Crassostrea virginica) hemocytes. Using the methods described in this study, we compared how ploidy impacts the rate, size, and efficacy of extracellular traps. Findings demonstrated that hemocyte extracellular traps were potent antimicrobials against both Gram-positive and Gram-negative bacteria. Furthermore, we provide evidence to suggest that agranulocytes may be the primary ETosis effector cells in C. virginica. This study is the first to describe extracellular traps in C. virginica and highlights the possible benefits of using triploid animals to gain a further understanding of ETosis and the factors that regulate its induction and efficacy.


Assuntos
Crassostrea , Armadilhas Extracelulares , Animais , Armadilhas Extracelulares/genética , Triploidia , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hemócitos
2.
Protist ; 172(1): 125793, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33607480

RESUMO

Quahog Parasite Unknown (QPX) is a facultative parasite of the hard clam, Mercenaria mercenaria. Although it has been observed in clams since the 1960's and cultivated since the 1990's, conflicting reports on important aspects of its biology have prevented its formal description. 18S rRNA gene sequences identify QPX as a thraustochytrid, but its production of copious mucus is atypical for this group. There are also conflicting reports about whether QPX shares common features of thraustochytrids, such as the production of an ectoplasmic net and biflagellate zoospores. This study reaffirms the previous descriptions of zoospore production by QPX in culture, in multiple strains from several geographic locations, and provides detail on how to maintain QPX cultures under conditions that promote the production of zoospores. Furthermore, we describe new aspects of the life cycle not previously observed. Finally, we erect Mucochytrium quahogii gen. nov., sp. nov. to accommodate this unusual thraustochytrid.


Assuntos
Eucariotos/classificação , Mercenaria/parasitologia , Animais , Eucariotos/genética , Estágios do Ciclo de Vida/fisiologia , Filogenia , RNA Ribossômico 18S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...