Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732486

RESUMO

In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies have explored the breadth of alpine plant thermal tolerances across a thermal gradient or the underlying genetic variation thereof. We measured photosystem heat (Tcrit-hot) and cold (Tcrit-cold) thresholds of ten Australian alpine species across elevation gradients and characterised their neutral genetic variation. To reveal the biogeographical drivers of present-day genetic signatures, we also reconstructed temporal changes in habitat suitability across potential distributional ranges. We found intraspecific variation in thermal thresholds, but this was not associated with elevation, nor underpinned by genetic differentiation on a local scale. Instead, regional population differentiation and considerable homozygosity within populations may, in part, be driven by distributional contractions, long-term persistence, and migrations following habitat suitability. Our habitat suitability models suggest that cool-climate-distributed alpine plants may be threatened by a warming climate. Yet, the observed wide thermal tolerances did not reflect this vulnerability. Conservation efforts should seek to understand variations in species-level thermal tolerance across alpine microclimates.

2.
J Phycol ; 59(1): 179-192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36345151

RESUMO

Foundation seaweed species are experiencing widespread declines and localized extinctions due to increased instability of sea surface temperature. Characterizing temperature thresholds are useful for predicting patterns of change and identifying species most vulnerable to extremes. Existing methods for characterizing seaweed thermal tolerance produce diverse metrics and are often time-consuming, making comparisons between species and techniques difficult, hindering insight into global patterns of change. Using three kelp species, we adapted a high-throughput method - previously used in terrestrial plant thermal biology - for use on kelps. This method employs temperature-dependent fluorescence (T-F0 ) curves under heating or cooling regimes to determine the critical temperature (Tcrit ) of photosystem II (PSII), i.e., the breakpoint between slow and fast rise fluorescence response to changing temperature, enabling rapid assays of photosynthetic thermal tolerance using a standardized metric. This method enables characterization of Tcrit for up to 48 samples per two-hour assay, demonstrating the capacity of T-F0 curves for high-throughput assays of thermal tolerance. Temperature-dependent fluorescence curves and their derived metric, Tcrit , may offer a timely and powerful new method for the field of phycology, enabling characterization and comparison of photosynthetic thermal tolerance of seaweeds across many populations, species, and biomes.


Assuntos
Clorofila , Kelp , Kelp/metabolismo , Fotossíntese/fisiologia , Temperatura , Complexo de Proteína do Fotossistema II/metabolismo
3.
Funct Plant Biol ; 50(1): 71-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210348

RESUMO

When leaves exceed their thermal threshold during heatwaves, irreversible damage to the leaf can accumulate. However, few studies have explored short-term acclimation of leaves to heatwaves that could help plants to prevent heat damage with increasing heatwave intensity. Here, we studied the heat tolerance of PSII (PHT) in response to a heatwave in Acacia species from across a strong environmental gradient in Australia. We compared PHT metrics derived from temperature-dependent chlorophyll fluorescence response curves (T-F 0 ) before and during a 4-day 38°C heatwave in a controlled glasshouse experiment. We found that the 15 Acacia species displayed surprisingly large and consistent PHT acclimation responses with a mean tolerance increase of 12°C (range, 7.7-19.1°C). Despite species originating from diverse climatic regions, neither maximum temperature of the warmest month nor mean annual precipitation at origin were clear predictors of PHT. To our knowledge, these are some of the largest measured acclimation responses of PHT from a controlled heatwave experiment. This remarkable capacity could partially explain why this genus has become more diverse and common as the Australian continent became more arid and suggests that the presence of Acacia in Australian ecosystems will remain ubiquitous with climate change.


Assuntos
Acacia , Termotolerância , Ecossistema , Austrália , Aclimatação
4.
Funct Plant Biol ; 48(6): 634-646, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33663678

RESUMO

Plant thermal tolerance is a crucial research area as the climate warms and extreme weather events become more frequent. Leaves exposed to temperature extremes have inhibited photosynthesis and will accumulate damage to PSII if tolerance thresholds are exceeded. Temperature-dependent changes in basal chlorophyll fluorescence (T-F0) can be used to identify the critical temperature at which PSII is inhibited. We developed and tested a high-throughput method for measuring the critical temperatures for PSII at low (CTMIN) and high (CTMAX) temperatures using a Maxi-Imaging fluorimeter and a thermoelectric Peltier plate heating/cooling system. We examined how experimental conditions of wet vs dry surfaces for leaves and heating/cooling rate, affect CTMIN and CTMAX across four species. CTMAX estimates were not different whether measured on wet or dry surfaces, but leaves were apparently less cold tolerant when on wet surfaces. Heating/cooling rate had a strong effect on both CTMAX and CTMIN that was species-specific. We discuss potential mechanisms for these results and recommend settings for researchers to use when measuring T-F0. The approach that we demonstrated here allows the high-throughput measurement of a valuable ecophysiological parameter that estimates the critical temperature thresholds of leaf photosynthetic performance in response to thermal extremes.


Assuntos
Temperatura Baixa , Temperatura Alta , Clorofila , Fluorescência , Folhas de Planta
5.
New Phytol ; 229(6): 3573-3586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205452

RESUMO

Assumptions about the germination ecology of alpine plants are presently based on individual species and local studies. A current challenge is to synthesise, at the global level, the alpine seed ecological spectrum. We performed a meta-analysis of primary data from laboratory experiments conducted across four continents (excluding the tropics) and 661 species, to estimate the influence of six environmental cues on germination proportion, mean germination time and germination synchrony; accounting for seed morphology (mass, embryo : seed ratio) and phylogeny. Most alpine plants show physiological seed dormancy, a strong need for cold stratification, warm-cued germination and positive germination responses to light and alternating temperatures. Species restricted to the alpine belt have a higher preference for warm temperatures and a stronger response to cold stratification than species whose distribution extends also below the treeline. Seed mass, embryo size and phylogeny have strong constraining effects on germination responses to the environment. Globally, overwintering and warm temperatures are key drivers of germination in alpine habitats. The interplay between germination physiology and seed morphological traits further reflects pressures to avoid frost or drought stress. Our results indicate the convergence, at the global level, of the seed germination patterns of alpine species.


Assuntos
Germinação , Sementes , Dormência de Plantas , Plantas , Temperatura
6.
Environ Exp Bot ; 106(100): 4-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25284910

RESUMO

Over-wintering reproductive buds of many woody plants survive frost by supercooling. The bud tissues are isolated from acropetally advancing ice by the presence of ice barriers that restrict ice growth. Plants living in alpine environments also face the risk of ice formation in summer months. Little knowledge exists, how reproductive structures of woody alpine plants are protected from frost injury during episodic summer frosts. In order to address this question, frost resistance of three common dwarf shrubs, Calluna vulgaris, Empetrum hermaphroditum and Loiseleuria procumbens was measured and ice formation and propagation were monitored in twigs bearing reproductive shoots during various stages of reproductive development (bud, anthesis, and fruit) throughout the alpine summer. Results indicated that, in the investigated species, ice barriers were present at all reproductive stages, isolating the reproductive shoots from ice advancing from the subtending vegetative shoot. Additionally, in the reproductive stems ice nucleating agents that are active at warm, sub-zero temperatures, were absent. The ice barriers were 100% effective, with the exception of L. procumbens, where in 13% of the total observations, the ice barrier failed. The ice barriers were localized at the base of the pedicel, at the anatomical junction of the vegetative and reproductive shoot. There, structural aspects of the tissue impede or prevent ice from advancing from the frozen stem into the pedicel of the reproductive shoot. Under the experimental conditions used in this study, ice nucleation initially occurred in the stem of the vegetative shoot at species-specific mean temperatures in the range of -4.7 to -5.8 °C. Reproductive shoots, however, remained supercooled and ice free down to a range of -7.2 to -18.2 °C or even below -22 °C, the lowest temperature applied in the study. This level of supercooling is sufficient to prevent freezing of reproductive structures at the lowest air temperature occurring at the altitude of the upper distribution boundary of the natural habitat of the investigated species which is between -8 and -10 °C in summer. Frost resistance assays indicated that reproductive shoots are much less frost resistant than vegetative stems, and in contrast to vegetative shoots, are not ice tolerant. Supercooling of reproductive shoots in alpine, woody plant species is an effective mechanism that protects developing offspring from potential frost damage resulting from episodic summer freezing events.

7.
Tree Physiol ; 31(10): 1128-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21990025

RESUMO

Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the canopy in microsites protected from high light. Nonetheless, it is common to find older saplings in clear areas and adults as emergent trees of the Chilean evergreen forest. We hypothesized that this shade to sun transition in N. nitida is supported by an increase in photochemical and non-photochemical energy dissipation capacities of both photosystems in parallel with the increase in plant size and light availability. To dissect the relative contribution of light environment and plant developmental stage to these physiological responses, the photosynthetic performance of both photosystems was studied from the morpho-anatomical to the biochemical level in current-year leaves of N. nitida plants of different heights (ranging from 0.1 to 7 m) growing under contrasting light environments (integrated quantum flux (IQF) 5-40 mol m(-2). Tree height (TH) and light environment (IQF) independently increased the saturated electron transport rates of both photosystems, as well as leaf and palisade thickness, but non-photochemical energy flux, photoinhibition susceptibility, state transition capacity, and the contents of D1 and PsbS proteins were not affected by IQF and TH. Spongy mesophyll thickness and palisade cell diameter decreased with IQF and TH. A(max), light compensation and saturation points, Rubisco and nitrogen content (area basis) only increased with light environment (IQF), whereas dark respiration (R(d)) decreased slightly and relative chlorophyll content was higher in taller trees. Overall, the independent effects of more illuminated environment and tree height mainly increased the photochemical instead of the non-photochemical energy flux. Regardless of the photochemical increase with TH, carbon assimilation only significantly improved with higher IQF. Therefore it seems that mainly acclimation to the light environment supports the phenotypic transition of N. nitida from shade to sun.


Assuntos
Magnoliopsida/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Luz Solar , Árvores/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Ecossistema , Magnoliopsida/anatomia & histologia , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Árvores/anatomia & histologia , Clima Tropical
8.
Tree Physiol ; 28(10): 1561-71, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18708338

RESUMO

Nothofagus nitida (Phil.) Krasser, an emergent tree of the Chilean evergreen forest, regenerates under the canopy. Nonetheless, it is common to find older saplings in clear areas. We hypothesized that this transition from shade to sun during the early developmental stages is made possible by an ontogenetic increase in the light acclimation capacity of photosynthesis. To test our hypothesis, we studied photosynthetic performance and photoprotection in N. nitida saplings at different developmental stages corresponding with three different height classes (short: 16.2 cm; medium-height: 48.0 cm; and tall: 73.7 cm) grown under contrasting light conditions (photosynthetic photon flux (PPF) of 20, 300 or 600 micromol m(-2) s(-1)) until newly expanded leaves had developed. Light-saturated CO(2) assimilation rate and light compensation and saturation points increased with increasing PPF. Medium-height and tall saplings acclimated to high light had higher electron transport rates and higher proportions of open Photosystem II reaction centers than shorter plants acclimated to high light. Short saplings showed higher thermal dissipation and contents of xanthophylls than taller saplings. Only medium-height and tall saplings acclimated to high light recovered after photoinhibition. State transitions were higher in short plants growing in low light, and decreased with plant height and growth irradiance. Thus, during development, N. nitida changes the balance of light energy utilization and photoprotective mechanisms, supporting a phenotypic transition from shade to sun during its early ontogeny.


Assuntos
Aclimatação/fisiologia , Luz , Magnoliopsida/fisiologia , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Fluorescência , Magnoliopsida/anatomia & histologia , Magnoliopsida/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...