Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 20(208): 20230367, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963556

RESUMO

Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behaviour and conservation strategies. Using elephants, a crucial species in Africa and Asia's protected areas, as our focal point, we delve into the role of AI and ML in their conservation. Given the increasing amounts of data gathered from a variety of sensors like cameras, microphones, geophones, drones and satellites, the challenge lies in managing and interpreting this vast data. New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked. This paper focuses on the different AI-driven monitoring methods and their potential for improving elephant conservation. Collaborative efforts between AI experts and ecological researchers are essential in leveraging these innovative technologies for enhanced wildlife conservation, setting a precedent for numerous other species.


Assuntos
Elefantes , Animais , Inteligência Artificial , Conservação dos Recursos Naturais/métodos , Animais Selvagens
2.
J Med Imaging (Bellingham) ; 9(6): 067001, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36337381

RESUMO

Purpose: Isolating the mainlobe and sidelobe contribution to the ultrasound image can improve imaging contrast by removing off-axis clutter. Previous work achieves this separation of mainlobe and sidelobe contributions based on the covariance of received signals. However, the formation of a covariance matrix at each imaging point can be computationally burdensome and memory intensive for real-time applications. Our work demonstrates that the mainlobe and sidelobe contributions to the ultrasound image can be isolated based on the receive aperture spectrum, greatly reducing computational and memory requirements. Approach: The separation of mainlobe and sidelobe contributions to the ultrasound image is shown in simulation, in vitro, and in vivo using the aperture spectrum method and multicovariate imaging of subresolution targets (MIST). Contrast, contrast-to-noise-ratio (CNR), and speckle signal-to-noise-ratio are used to compare the aperture spectrum approach with MIST and conventional delay-and-sum (DAS) beamforming. Results: The aperture spectrum approach improves contrast by 1.9 to 6.4 dB beyond MIST and 8.9 to 13.5 dB beyond conventional DAS B-mode imaging. However, the aperture spectrum approach yields speckle texture similar to DAS. As a result, the aperture spectrum-based approach has less CNR than MIST but greater CNR than conventional DAS. The CPU implementation of the aperture spectrum-based approach is shown to reduce computation time by a factor of 9 and memory consumption by a factor of 128 for a 128-element transducer. Conclusions: The mainlobe contribution to the ultrasound image can be isolated based on the receive aperture spectrum, which greatly reduces the computational cost and memory requirement of this approach as compared with MIST.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35353699

RESUMO

Phase aberration is widely considered a major source of image degradation in medical pulse-echo ultrasound. Traditionally, near-field phase aberration correction techniques are unable to account for distributed aberrations due to a spatially varying speed of sound in the medium, while most distributed aberration correction techniques require the use of point-like sources and are impractical for clinical applications where diffuse scattering is dominant. Here, we present two distributed aberration correction techniques that utilize sound speed estimates from a tomographic sound speed estimator that builds on our previous work with diffuse scattering in layered media. We first characterize the performance of our sound speed estimator and distributed aberration correction techniques in simulations where the scattering in the media is known a priori. Phantom and in vivo experiments further demonstrate the capabilities of the sound speed estimator and the aberration correction techniques. In phantom experiments, point target resolution improves from 0.58 to 0.26 and 0.27 mm, and lesion contrast improves from 17.7 to 23.5 and 25.9 dB, as a result of distributed aberration correction using the eikonal and wavefield correlation techniques, respectively.


Assuntos
Som , Tomografia , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Ultrassonografia/métodos
4.
IEEE Trans Med Imaging ; 40(4): 1184-1195, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400649

RESUMO

Diffuse reverberation is ultrasound image noise caused by multiple reflections of the transmitted pulse before returning to the transducer, which degrades image quality and impedes the estimation of displacement or flow in techniques such as elastography and Doppler imaging. Diffuse reverberation appears as spatially incoherent noise in the channel signals, where it also degrades the performance of adaptive beamforming methods, sound speed estimation, and methods that require measurements from channel signals. In this paper, we propose a custom 3D fully convolutional neural network (3DCNN) to reduce diffuse reverberation noise in the channel signals. The 3DCNN was trained with channel signals from simulations of random targets that include models of reverberation and thermal noise. It was then evaluated both on phantom and in-vivo experimental data. The 3DCNN showed improvements in image quality metrics such as generalized contrast to noise ratio (GCNR), lag one coherence (LOC) contrast-to-noise ratio (CNR) and contrast for anechoic regions in both phantom and in-vivo experiments. Visually, the contrast of anechoic regions was greatly improved. The CNR was improved in some cases, however the 3DCNN appears to strongly remove uncorrelated and low amplitude signal. In images of in-vivo carotid artery and thyroid, the 3DCNN was compared to short-lag spatial coherence (SLSC) imaging and spatial prediction filtering (FXPF) and demonstrated improved contrast, GCNR, and LOC, while FXPF only improved contrast and SLSC only improved CNR.


Assuntos
Redes Neurais de Computação , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
5.
IEEE Trans Med Imaging ; 39(10): 3079-3088, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32286963

RESUMO

Ultrasound molecular imaging (UMI) is enabled by targeted microbubbles (MBs), which are highly reflective ultrasound contrast agents that bind to specific biomarkers. Distinguishing between adherent MBs and background signals can be challenging in vivo. The preferred preclinical technique is differential targeted enhancement (DTE), wherein a strong acoustic pulse is used to destroy MBs to verify their locations. However, DTE intrinsically cannot be used for real-time imaging and may cause undesirable bioeffects. In this work, we propose a simple 4-layer convolutional neural network to nondestructively detect adherent MB signatures. We investigated several types of input data to the network: "anatomy-mode" (fundamental frequency), "contrast-mode" (pulse-inversion harmonic frequency), or both, i.e., "dual-mode", using IQ channel signals, the channel sum, or the channel sum magnitude. Training and evaluation were performed on in vivo mouse tumor data and microvessel phantoms. The dual-mode channel signals yielded optimal performance, achieving a soft Dice coefficient of 0.45 and AUC of 0.91 in two test images. In a volumetric acquisition, the network best detected a breast cancer tumor, resulting in a generalized contrast-to-noise ratio (GCNR) of 0.93 and Kolmogorov-Smirnov statistic (KSS) of 0.86, outperforming both regular contrast mode imaging (GCNR = 0.76, KSS = 0.53) and DTE imaging (GCNR = 0.81, KSS = 0.62). Further development of the methodology is necessary to distinguish free from adherent MBs. These results demonstrate that neural networks can be trained to detect targeted MBs with DTE-like quality using nondestructive dual-mode data, and can be used to facilitate the safe and real-time translation of UMI to clinical applications.


Assuntos
Aprendizado Profundo , Microbolhas , Animais , Meios de Contraste , Humanos , Camundongos , Imagem Molecular , Ultrassonografia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30869612

RESUMO

With traditional beamforming methods, ultrasound B-mode images contain speckle noise caused by the random interference of subresolution scatterers. In this paper, we present a framework for using neural networks to beamform ultrasound channel signals into speckle-reduced B-mode images. We introduce log-domain normalization-independent loss functions that are appropriate for ultrasound imaging. A fully convolutional neural network was trained with the simulated channel signals that were coregistered spatially to ground-truth maps of echogenicity. Networks were designed to accept 16 beamformed subaperture radio frequency (RF) signals. Training performance was compared as a function of training objective, network depth, and network width. The networks were then evaluated on the simulation, phantom, and in vivo data and compared against the existing speckle reduction techniques. The most effective configuration was found to be the deepest (16 layer) and widest (32 filter) networks, trained to minimize a normalization-independent mixture of the l1 and multiscale structural similarity (MS-SSIM) losses. The neural network significantly outperformed delay-and-sum (DAS) and receive-only spatial compounding in speckle reduction while preserving resolution and exhibited improved detail preservation over a nonlocal means method. This work demonstrates that ultrasound B-mode image reconstruction using machine-learned neural networks is feasible and establishes that networks trained solely in silico can be generalized to real-world imaging in vivo to produce images with significantly reduced speckle.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Idoso , Algoritmos , Feminino , Humanos , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...