Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167322, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37758126

RESUMO

Surfactants are widely used 'down-the-drain' chemicals with the potential to occur at high concentrations in local water bodies and to be part of unintentional environmental mixtures. Recently, increased regulatory focus has been placed on the impacts of complex mixtures in aquatic environments and the substances that are likely to drive mixture risk. This study assessed the contribution of surfactants to the total mixture pressure in freshwater ecosystems. Environmental concentrations, collated from existing French monitoring data, were combined with estimated ecotoxicological thresholds to calculate hazard quotients (HQ) for each substance, and hazard indices (HI) for each mixture. Two scenarios were investigated to correct for concentrations below the limit of quantification (LOQ) in the dataset. The first (best-case) scenario assumed all values

2.
BMC Vet Res ; 15(1): 375, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660964

RESUMO

BACKGROUND: Since 2016, incursions of highly pathogenic avian influenza virus (HPAIV) H5N8 clade 2.3.4.4b have caused unprecedented clinical signs and mortality in white-tailed eagles (WTE; Haliaeetus albicilla) across Europe and have been found to be infecting other raptor species, such as the northern goshawk (NG; Accipiter gentilis). Before this study, no screening of Norwegian raptors had been undertaken. RESULTS: Plasma samples from 43 white-tailed eagle and 29 northern goshawk nestlings, from several locations across Norway were screened for antibodies to avian influenza viruses. No antibodies, and thus, no evidence of AIV exposure, were found in these Norwegian raptors. No clinical signs of AIV were observed in 43 white tailed eagles and 29 northern goshawks. CONCLUSIONS: There are currently no indications that white-tailed eagles and northern goshawks inhabiting Norway are threatened by the recent HPAIV outbreaks in other areas of Europe. Ongoing monitoring should, however, be maintained to detect potential future outbreaks.


Assuntos
Anticorpos Antivirais/sangue , Águias , Falcões , Vírus da Influenza A Subtipo H5N8/imunologia , Influenza Aviária/imunologia , Envelhecimento , Animais , Influenza Aviária/epidemiologia , Noruega/epidemiologia
4.
Environ Res ; 178: 108678, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520824

RESUMO

In the present study, concentrations of legacy and emerging contaminants were determined in three non-destructive matrices (plasma, preen oil and body feathers) of northern goshawk (Accipiter gentilis) nestlings. Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), together with emerging pollutants, including per- and polyfluorinated alkyl substances (PFASs), novel brominated flame retardants (NBFRs), phosphorus flame retardants (PFRs) and Dechlorane Plus isomers (DPs) were targeted. Plasma, preen oil and feather samples were collected from 61 goshawk nestlings in Norway (Trøndelag and Troms) in 2015 and 2016, and pollutant concentrations were compared between the three matrices. In plasma, PFASs were detected in the highest concentrations, ranging between 1.37 and 36.0 ng/mL, which suggests that the nestlings were recently and continuously exposed to these emerging contaminants, likely through dietary input. In preen oil, OCPs (169-3560 ng/g) showed the highest concentrations among the investigated compounds, consistent with their high lipophilicity. PFRs (2.60-314 ng/g) were the dominant compounds in feathers and are thought to originate mainly from external deposition, as they were not detected in the other two matrices. NBFRs and DPs were generally not detected in the nestlings, suggesting low presence of these emerging contaminants in their environment and/or low absorption. Strong and significant correlations between matrices were found for all POPs (rs = 0.46-0.95, p < 0.001), except for hexachlorobenzene (HCB, rs = 0.20, p = 0.13). Correlations for PFASs were less conclusive: linear perfluorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnA), perfluorododecanoate (PFDoA) and perfluorotetradecanoate (PFTeA) showed strong and significant correlations between plasma and feathers (rs = 0.42-0.72, p < 0.02), however no correlation was found for perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA) and perfluorotridecanoate (PFTriA) (rs = 0.05-0.33, p = 0.09-0.85). A lack of consistency between the PFAS compounds (contrary to POPs), and between studies, prevents concluding on the suitability of the investigated matrices for PFAS biomonitoring.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Falconiformes/metabolismo , Animais , Éteres Difenil Halogenados/metabolismo , Noruega , Bifenilos Policlorados/metabolismo
5.
Sci Total Environ ; 647: 525-533, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30089276

RESUMO

While feathers have been successfully validated for monitoring of internal concentrations of heavy metals and legacy persistent organic pollutants (POPs), less is known about their suitability for monitoring of emerging contaminants (ECs). Our study presents a broad investigation of both legacy POPs and ECs in non-destructive matrices from a bird of prey. Plasma and feathers were sampled in 2015 and 2016 from 70 whitetailed eagle (Haliaeetus albicilla) nestlings from two archipelagos in Norway. Preen oil was also sampled in 2016. Samples were analysed for POPs (polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorinated pesticides (OCPs)) and ECs (per- and polyfluoroalkyl substances (PFASs), dechlorane plus (DPs), phosphate and novel brominated flame retardants (PFRs and NBFRs)). A total of nine PCBs, three OCPs, one PBDE and one PFAS were detected in over 50% of the plasma and feather samples within each sampling year and location. Significant and positive correlations were found between plasma, feathers and preen oil concentrations of legacy POPs and confirm the findings of previous research on the usefulness of these matrices for non-destructive monitoring. In contrast, the suitability of feathers for ECs seems to be limited. Detection frequencies (DF) of PFASs were higher in plasma (mean DF: 78%) than in feathers (mean DF: 38%). Only perfluoroundecanoic acid could be quantified in over 50% of both plasma and feather samples, yet their correlation was poor and not significant. The detection frequencies of PFRs, NBFRs and DPs were very low in plasma (mean DF: 1-13%), compared to feathers (mean DF: 10-57%). This may suggest external atmospheric deposition, rapid internal biotransformation or excretion of these compounds. Accordingly, we suggest prioritising plasma for PFASs analyses, while the sources of PFRs, NBFRs and DPs in feathers and plasma need further investigation.


Assuntos
Águias , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Plumas/química , Animais , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Hidrocarbonetos Clorados/análise , Noruega , Bifenilos Policlorados/análise
6.
Environ Pollut ; 246: 527-534, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30583161

RESUMO

Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44 - 87 days old) and stable carbon and nitrogen isotopes (δ13C and δ15N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82 - 59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89 - 52.19 ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03 - 2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58 - 52.94 ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by δ13C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings.


Assuntos
Águias/sangue , Poluentes Ambientais/sangue , Éteres Difenil Halogenados/sangue , Bifenilos Policlorados/sangue , Animais , Dieta , Monitoramento Ambiental , Retardadores de Chama/análise , Lubrificantes/sangue , Noruega , Praguicidas/sangue
7.
Environ Sci Technol ; 52(21): 12859-12867, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351028

RESUMO

The chlorinated polyfluoroalkyl ether sulfonate F-53B is used as a mist suppressant in the Chinese electroplating industry. Because of the regulations on perfluorooctanesulfonate (PFOS), its use is expected to increase. Until now, F-53B toxicity data have been scarce and are, to our knowledge, lacking for birds. This study therefore investigated the effects of PFOS and F-53B, separately and as mixtures, on the development of the chicken ( Gallus gallus domesticus). Compounds were injected in ovo, before incubation, at 150 and 1500 ng/g egg. At embryonic day 20, a significantly lower heart rate was observed in all treated groups compared to the control group and hatchlings exposed to the high dose of F-53B had a significantly enlarged liver (8%). Embryonic survival was not affected and no significant effects on hatchling body mass or oxidative stress parameters were found. Our results suggest that these compounds likely have different toxicity thresholds for the investigated endpoints, and/or different modes of action. This study thereby underlines the potential developmental toxicity of PFOS and F-53B at environmentally relevant concentrations. Assessment of PFOS alternatives should therefore continue, preferably prior to their large scale use, as they should be ensured to be less harmful than PFOS itself.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Galinhas , Éter , Peixe-Zebra
8.
Ecotoxicol Environ Saf ; 149: 51-57, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29149662

RESUMO

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and Dechlorane Plus (DP) are two chlorinated, alternative flame retardants that have been found in wild birds and bird eggs. Little is known about the fate and effect of these compounds in birds, especially during the vulnerable stages of embryonic development. To investigate the ability of birds to biotransform these compounds, an in ovo exposure experiment with Japanese quail eggs was performed. Quail eggs were injected in the yolk sac with 1000ng/g egg of TDCIPP (2.3 nmol/g ww), DP (1.5 nmol/g ww) or a mixture of both and were then incubated at 37.5°C for 17 days. To get a time-integrated understanding of the in ovo transformation of the compounds, one egg per treatment was removed from the incubator every day and analyzed for TDCIPP and its metabolite bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and/or for DP. By the end of the incubation period, TDCIPP was completely metabolized, while simultaneously BDCIPP was formed. The conversion of the parent compound into the metabolite did not occur proportionally and the concentration of BDCIPP showed a tendency to decrease when TDCIPP became depleted, both indicating that BDCIPP was further transformed into compounds not targeted for analysis. Further untargeted investigations did not show the presence of other metabolites, possibly due to the volatility of the metabolites. On the other hand, the DP concentration did not decrease during egg incubation. This study indicates that within the incubation period, avian embryos are able to biotransform TDCIPP, but not DP.


Assuntos
Coturnix/metabolismo , Retardadores de Chama/toxicidade , Hidrocarbonetos Clorados/toxicidade , Compostos Organofosforados/toxicidade , Óvulo/efeitos dos fármacos , Compostos Policíclicos/toxicidade , Animais , Biotransformação , Desenvolvimento Embrionário/efeitos dos fármacos , Retardadores de Chama/metabolismo , Hidrocarbonetos Clorados/metabolismo , Compostos Organofosforados/metabolismo , Óvulo/metabolismo , Compostos Policíclicos/metabolismo , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/metabolismo
9.
J Toxicol Environ Health A ; 80(9): 525-531, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28696837

RESUMO

Japanese quails (Coturnix japonica) were exposed in ovo to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP; 500 ng/µl), Dechlorane Plus (DP; 500 ng/µl), or a 1:1 mixture of these two to investigate the effects on liver and thyroid gland morphology. Histological examination of 14-day-old quails showed that exposure to TDCIPP or the mixture induced hepatic sinusoidal dilatation. No marked effects were seen for DP alone. In addition, the mixture produced divergence of thyroid gland follicles and proliferation of follicular cells. Our study is the first demonstrating histopathological alterations as a result of exposure during early development to the flame retardants TDCIPP or a TDCIPP-DP mixture suggesting the need for further research efforts to investigate potential adverse health effects associated with exposure to these environmental chemicals in wild birds.


Assuntos
Coturnix/crescimento & desenvolvimento , Retardadores de Chama/toxicidade , Hidrocarbonetos Clorados/toxicidade , Fígado/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Compostos Policíclicos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais
10.
Environ Res ; 137: 199-207, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25569844

RESUMO

Organohalogenated compounds are widespread in the marine environment and can be a serious threat to organisms in all levels of aquatic food webs, including elasmobranch species. Information about the concentrations of POPs (persistent organic pollutants) and of MeO-PBDEs (methoxylated polybrominated diphenyl ethers) in elasmobranchs is scarce and potential toxic effects are poorly understood. The aims of the present study were therefore to investigate the occurrence of multiple POP classes (PCBs, PBDEs, DDXs, HCB, CHLs) and of MeO-PBDEs in various elasmobranch species from different trophic levels in estuarine and marine waters of the southeastern United States. Overall, levels and patterns of PCBs, PBDEs, DDXs, HCB, CHLs and of MeO-PBDEs varied according to the species, maturity stage, gender and habitat type. The lowest levels of POPs were found in Atlantic stingrays and the highest levels were found in bull sharks. As both species are respectively near the bottom and at top of the trophic web, with juvenile bull sharks frequently feeding on Atlantic stingrays, these findings further suggest a bioaccumulation and biomagnification process with trophic position. MeO-PBDEs were not detected in Atlantic stingrays, but were found in all shark species. HCB was not found in Atlantic stingrays, bonnetheads or lemon sharks, but was detected in the majority of bull sharks examined. Comparison with previous studies suggests that Atlantic stingrays may be experiencing toxic effects of PCBs and DDXs on their immune system. However, the effect of these compounds on the health of shark species remains unclear.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Halogenados/análise , Hidrocarbonetos Halogenados/metabolismo , Tubarões/metabolismo , Rajidae/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Exposição Ambiental , Feminino , Florida , Cromatografia Gasosa-Espectrometria de Massas , Masculino
11.
Mar Pollut Bull ; 92(1-2): 59-68, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595490

RESUMO

Elasmobranchs can bioaccumulate considerable amounts of persistent organic pollutants (POPs) and utilize several reproductive strategies thereby influencing maternal transfer of contaminants. This study provides preliminary data on the POP transfer from pregnant females to offspring of three species (Atlantic stingrays, bonnethead, blacktip sharks) with different reproduction modes (aplacental, placental viviparity). Polychlorinated biphenyl (PCB) levels were generally higher than any other POPs. Stingrays and blacktip shark embryos contained the lowest POP concentrations while bonnetheads and the blacktip adult female had the highest concentrations. Results suggest that POPs are more readily transferred from the mother to the embryo compared to what is transferred to ova in stingrays. Statistically significant differences in levels of selected POPs were found between embryos from the left and right uterus within the same litter as well as between female and male embryos within the same litter for bonnetheads, but not for the blacktip sharks.


Assuntos
Bifenilos Policlorados/análise , Tubarões/embriologia , Rajidae/embriologia , Poluentes Químicos da Água/análise , Animais , Oceano Atlântico , Embrião não Mamífero , Monitoramento Ambiental , Feminino , Lipídeos/análise , Reprodução , Tubarões/fisiologia , Rajidae/fisiologia , Especificidade da Espécie , Útero , Viviparidade não Mamífera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...