Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 14(4): e086153, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582538

RESUMO

INTRODUCTION: Epilepsy is a common neurological disorder characterised by recurrent seizures. Almost half of patients who have an unprovoked first seizure (UFS) have additional seizures and develop epilepsy. No current predictive models exist to determine who has a higher risk of recurrence to guide treatment. Emerging evidence suggests alterations in cognition, mood and brain connectivity exist in the population with UFS. Baseline evaluations of these factors following a UFS will enable the development of the first multimodal biomarker-based predictive model of seizure recurrence in adults with UFS. METHODS AND ANALYSIS: 200 patients and 75 matched healthy controls (aged 18-65) from the Kingston and Halifax First Seizure Clinics will undergo neuropsychological assessments, structural and functional MRI, and electroencephalography. Seizure recurrence will be assessed prospectively. Regular follow-ups will occur at 3, 6, 9 and 12 months to monitor recurrence. Comparisons will be made between patients with UFS and healthy control groups, as well as between patients with and without seizure recurrence at follow-up. A multimodal machine-learning model will be trained to predict seizure recurrence at 12 months. ETHICS AND DISSEMINATION: This study was approved by the Health Sciences and Affiliated Teaching Hospitals Research Ethics Board at Queen's University (DMED-2681-22) and the Nova Scotia Research Ethics Board (1028519). It is supported by the Canadian Institutes of Health Research (PJT-183906). Findings will be presented at national and international conferences, published in peer-reviewed journals and presented to the public via patient support organisation newsletters and talks. TRIAL REGISTRATION NUMBER: NCT05724719.


Assuntos
Epilepsia , Convulsões , Adulto , Humanos , Estudos Prospectivos , Recidiva , Convulsões/epidemiologia , Epilepsia/epidemiologia , Eletroencefalografia , Nova Escócia , Estudos Multicêntricos como Assunto
2.
Can J Neurol Sci ; : 1-8, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572544

RESUMO

BACKGROUND/OBJECTIVE: Identifying a patient's dominant language hemisphere is an important evaluation performed prior to epilepsy surgery and is commonly assessed using functional magnetic resonance imaging (fMRI). However, the lack of standardization and resultant heterogeneity of fMRI paradigms used in clinical practice limits the ability of cross-center comparisons to be made regarding language laterality results. METHODS: Through surveying Canadian Epilepsy Centres in combination with reviewing supporting literature, current fMRI language lateralization practices for the clinical evaluation of patients with epilepsy were assessed. To encourage standardization of this practice, we outlined a two-part paradigm series that demonstrates widespread acceptance, reliability and accessibility in lateralizing various aspects of language functioning in individuals with average or near-average IQ and normal literacy skills. RESULTS: The collected data confirm a lack of standardization in fMRI laterality assessments leading to clinical heterogeneity in stimulation and control tasks, paradigm design and timing, laterality index calculations, thresholding values and analysis software and technique. We suggest a Sentence Completion (SC) and Word Generation (WG) paradigm series as it was most commonly employed across Canada, demonstrated reliability in lateralizing both receptive and expressive language areas in supporting literature, and could be readily intelligible to an inclusive population. CONCLUSION: Through providing recommendations for a two-part paradigm series, we hope to contribute to the standardization of this practice across Canada to reduce clinical heterogeneity, encourage communicability between institutions, and enhance methodologies for the surgical treatment of epilepsy for the benefit of all individuals living with epilepsy in Canada.

3.
Vision (Basel) ; 8(1)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535763

RESUMO

The tremendous increase in the use of video-based eye tracking has made it possible to collect eye tracking data from thousands of participants. The traditional procedures for the manual detection and classification of saccades and for trial categorization (e.g., correct vs. incorrect) are not viable for the large datasets being collected. Additionally, video-based eye trackers allow for the analysis of pupil responses and blink behaviors. Here, we present a detailed description of our pipeline for collecting, storing, and cleaning data, as well as for organizing participant codes, which are fairly lab-specific but nonetheless, are important precursory steps in establishing standardized pipelines. More importantly, we also include descriptions of the automated detection and classification of saccades, blinks, "blincades" (blinks occurring during saccades), and boomerang saccades (two nearly simultaneous saccades in opposite directions where speed-based algorithms fail to split them), This is almost entirely task-agnostic and can be used on a wide variety of data. We additionally describe novel findings regarding post-saccadic oscillations and provide a method to achieve more accurate estimates for saccade end points. Lastly, we describe the automated behavior classification for the interleaved pro/anti-saccade task (IPAST), a task that probes voluntary and inhibitory control. This pipeline was evaluated using data collected from 592 human participants between 5 and 93 years of age, making it robust enough to handle large clinical patient datasets. In summary, this pipeline has been optimized to consistently handle large datasets obtained from diverse study cohorts (i.e., developmental, aging, clinical) and collected across multiple laboratory sites.

4.
eNeuro ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331578

RESUMO

Spontaneous eye blinking is gaining popularity as a proxy for higher cognitive functions, as it is readily modulated by both environmental demands and internal processes. Prior studies were impoverished in sample size, sex representation and age distribution, making it difficult to establish a complete picture of the behavior. Here we present eye-tracking data from a large cohort of normative participants (n=604, 393 F, aged 5-93 years) performing two tasks: one with structured, discrete trials (interleaved pro/anti-saccade task; IPAST) and one with a less structured, continuous organization in which participants watch movies (free-viewing; FV). Sex- and age-based analyses revealed that females had higher blink rates between the ages of 22 and 58 years in the IPAST, and 22 and 34 years in FV. We derived a continuous measure of blink probability to reveal behavioral changes driven by stimulus appearance in both paradigms. In the IPAST, blinks were suppressed near stimulus appearance, particularly on correct anti-saccade trials, which we attribute to the stronger inhibitory control required for anti-saccades compared to pro-saccades. In FV, blink suppression occurred immediately after scene changes, and the effect was sustained on scenes where gaze clustered among participants (indicating engagement of attention). Females were more likely than males to blink during appearance of novel stimuli in both tasks, but only within the age bin of 18-44 years. The consistency of blink patterns in each paradigm endorses blinking as a sensitive index for changes in visual processing and attention, while sex and age differences drive interindividual variability.Significance Statement Eye-tracking is becoming useful as a non-invasive tool for detecting preclinical markers of neurological and psychiatric disease. Blinks are understudied despite being an important supplement to saccade and pupil eye-tracking metrics. The present study is a crucial step in developing a healthy baseline for blink behavior to compare to clinical groups. While many prior blink studies suffered from small sample sizes with relatively low age- and sex-diversity (review by Jongkees & Colzato, 2016), our large cohort of healthy participants has permitted a more detailed analysis of sex and age effects in blink behavior. Furthermore, our analysis techniques are robust to temporal changes in blink probability, greatly clarifying the relationship between blinking, visual processing, and inhibitory control mechanisms on visual tasks.

5.
Brain Commun ; 5(2): fcad049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970045

RESUMO

Oculomotor tasks generate a potential wealth of behavioural biomarkers for neurodegenerative diseases. Overlap between oculomotor and disease-impaired circuitry reveals the location and severity of disease processes via saccade parameters measured from eye movement tasks such as prosaccade and antisaccade. Existing studies typically examine few saccade parameters in single diseases, using multiple separate neuropsychological test scores to relate oculomotor behaviour to cognition; however, this approach produces inconsistent, ungeneralizable results and fails to consider the cognitive heterogeneity of these diseases. Comprehensive cognitive assessment and direct inter-disease comparison are crucial to accurately reveal potential saccade biomarkers. We remediate these issues by characterizing 12 behavioural parameters, selected to robustly describe saccade behaviour, derived from an interleaved prosaccade and antisaccade task in a large cross-sectional data set comprising five disease cohorts (Alzheimer's disease/mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease, and cerebrovascular disease; n = 391, age 40-87) and healthy controls (n = 149, age 42-87). These participants additionally completed an extensive neuropsychological test battery. We further subdivided each cohort by diagnostic subgroup (for Alzheimer's disease/mild cognitive impairment and frontotemporal dementia) or degree of cognitive impairment based on neuropsychological testing (all other cohorts). We sought to understand links between oculomotor parameters, their relationships to robust cognitive measures, and their alterations in disease. We performed a factor analysis evaluating interrelationships among the 12 oculomotor parameters and examined correlations of the four resultant factors to five neuropsychology-based cognitive domain scores. We then compared behaviour between the abovementioned disease subgroups and controls at the individual parameter level. We theorized that each underlying factor measured the integrity of a distinct task-relevant brain process. Notably, Factor 3 (voluntary saccade generation) and Factor 1 (task disengagements) significantly correlated with attention/working memory and executive function scores. Factor 3 also correlated with memory and visuospatial function scores. Factor 2 (pre-emptive global inhibition) correlated only with attention/working memory scores, and Factor 4 (saccade metrics) correlated with no cognitive domain scores. Impairment on several mostly antisaccade-related individual parameters scaled with cognitive impairment across disease cohorts, while few subgroups differed from controls on prosaccade parameters. The interleaved prosaccade and antisaccade task detects cognitive impairment, and subsets of parameters likely index disparate underlying processes related to different cognitive domains. This suggests that the task represents a sensitive paradigm that can simultaneously evaluate a variety of clinically relevant cognitive constructs in neurodegenerative and cerebrovascular diseases and could be developed into a screening tool applicable to multiple diagnoses.

6.
Parkinsonism Relat Disord ; 110: 105316, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822878

RESUMO

INTRODUCTION: 83% of those diagnosed with Parkinson's Disease (PD) eventually progress to PD with mild cognitive impairment (PD-MCI) followed by dementia (PDD) - suggesting a complex spectrum of pathology concomitant with aging. Biomarkers sensitive and specific to this spectrum are required if useful diagnostics are to be developed that may supplement current clinical testing procedures. We used video-based eye tracking and machine learning to develop a simple, non-invasive test sensitive to PD and the stages of cognitive dysfunction. METHODS: From 121 PD (45 Cognitively Normal/45 MCI/20 Dementia/11 Other) and 106 healthy controls, we collected video-based eye tracking data on an interleaved pro/anti-saccade task. Features of saccade, pupil, and blink behavior were used to train a classifier to predict confidence scores for PD/PD-MCI/PDD diagnosis. RESULTS: The Receiver Operator Characteristic Area Under the Curve (ROC-AUC) of the classifier was 0.88, with the cognitive-dysfunction subgroups showing progressively increased AUC, and the AUC of PDD being 0.95. The classifier reached a sensitivity of 83% and a specificity of 78%. The confidence scores predicted PD motor and cognitive performance scores. CONCLUSION: Biomarkers of saccade, pupil, and blink were extracted from video-based eye tracking to create a classifier with high sensitivity to the landscape of PD cognitive and motor dysfunction. A complex landscape of PD is revealed through a quick, non-invasive eye tracking task and our model provides a framework for such a task to be used as a supplementary screening tool in the clinic.


Assuntos
Disfunção Cognitiva , Demência , Doença de Parkinson , Humanos , Tecnologia de Rastreamento Ocular , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Biomarcadores , Demência/diagnóstico , Testes Neuropsicológicos
7.
Front Aging Neurosci ; 14: 842549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663573

RESUMO

The capacity for inhibitory control is an important cognitive process that undergoes dynamic changes over the course of the lifespan. Robust characterization of this trajectory, considering age continuously and using flexible modeling techniques, is critical to advance our understanding of the neural mechanisms that differ in healthy aging and neurological disease. The interleaved pro/anti-saccade task (IPAST), in which pro- and anti-saccade trials are randomly interleaved within a block, provides a simple and sensitive means of assessing the neural circuitry underlying inhibitory control. We utilized IPAST data collected from a large cross-sectional cohort of normative participants (n = 604, 5-93 years of age), standardized pre-processing protocols, generalized additive modeling, and change point analysis to investigate the effect of age on saccade behavior and identify significant periods of change throughout the lifespan. Maturation of IPAST measures occurred throughout adolescence, while subsequent decline began as early as the mid-20s and continued into old age. Considering pro-saccade correct responses and anti-saccade direction errors made at express (short) and regular (long) latencies was crucial in differentiating developmental and aging processes. We additionally characterized the effect of age on voluntary override time, a novel measure describing the time at which voluntary processes begin to overcome automated processes on anti-saccade trials. Drawing on converging animal neurophysiology, human neuroimaging, and computational modeling literature, we propose potential frontal-parietal and frontal-striatal mechanisms that may mediate the behavioral changes revealed in our analysis. We liken the models presented here to "cognitive growth curves" which have important implications for improved detection of neurological disease states that emerge during vulnerable windows of developing and aging.

8.
J Neurol ; 269(9): 4920-4938, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35501501

RESUMO

OBJECTIVES: This study (1) describes and compares saccade and pupil abnormalities in patients with manifest alpha-synucleinopathies (αSYN: Parkinson's disease (PD), Multiple System Atrophy (MSA)) and a tauopathy (progressive supranuclear palsy (PSP)); (2) determines whether patients with rapid-eye-movement sleep behaviour disorder (RBD), a prodromal stage of αSYN, already have abnormal responses that may indicate a risk for developing PD or MSA. METHODS: Ninety (46 RBD, 27 PD, 17 MSA) patients with an αSYN, 10 PSP patients, and 132 healthy age-matched controls (CTRL) were examined with a 10-min video-based eye-tracking task (Free Viewing). Participants were free to look anywhere on the screen while saccade and pupil behaviours were measured. RESULTS: PD, MSA, and PSP spent more time fixating the centre of the screen than CTRL. All patient groups made fewer macro-saccades (> 2◦ amplitude) with smaller amplitude than CTRL. Saccade frequency was greater in RBD than in other patients. Following clip change, saccades were temporarily suppressed, then rebounded at a slower pace than CTRL in all patient groups. RBD had distinct, although discrete saccade abnormalities that were more marked in PD, MSA, and even more in PSP. The vertical saccade rate was reduced in all patients and decreased most in PSP. Clip changes produced large increases or decreases in screen luminance requiring pupil constriction or dilation, respectively. PSP elicited smaller pupil constriction/dilation responses than CTRL, while MSA elicited the opposite. CONCLUSION: RBD patients already have discrete but less pronounced saccade abnormalities than PD and MSA patients. Vertical gaze palsy and altered pupil control differentiate PSP from αSYN.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Paralisia Supranuclear Progressiva , Sinucleinopatias , Biomarcadores , Tecnologia de Rastreamento Ocular , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico
9.
J Neurosci ; 42(1): 69-80, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34759032

RESUMO

When presented with a periodic stimulus, humans spontaneously adjust their movements from reacting to predicting the timing of its arrival, but little is known about how this sensorimotor adaptation changes across development. To investigate this, we analyzed saccade behavior in 114 healthy humans (ages 6-24 years) performing the visual metronome task, who were instructed to move their eyes in time with a visual target that alternated between two known locations at a fixed rate, and we compared their behavior to performance in a random task, where target onsets were randomized across five interstimulus intervals (ISIs) and thus the timing of appearance was unknown. Saccades initiated before registration of the visual target, thus in anticipation of its appearance, were labeled predictive [saccade reaction time (SRT) < 90 ms] and saccades that were made in reaction to its appearance were labeled reactive (SRT > 90 ms). Eye-tracking behavior including saccadic metrics (e.g., peak velocity, amplitude), pupil size following saccade to target, and blink behavior all varied as a function of predicting or reacting to periodic targets. Compared with reactive saccades, predictive saccades had a lower peak velocity, a hypometric amplitude, smaller pupil size, and a reduced probability of blink occurrence before target appearance. The percentage of predictive and reactive saccades changed inversely from ages 8-16, at which they reached adult-levels of behavior. Differences in predictive saccades for fast and slow target rates are interpreted by differential maturation of cerebellar-thalamic-striatal pathways.SIGNIFICANCE STATEMENT From the first moments of life, humans are exposed to rhythm (i.e., mother's heartbeat in utero), but the timeline of brain development to promote the identification and anticipation of a rhythmic stimulus, known as temporal prediction, remains unknown. Here, we used saccade reaction time (SRT) in the visual metronome task to differentiate between temporally predictive and reactive responses to a target that alternated at a fixed rate in humans aged 6-24. Periods of age-related change varied little by target rate, with matured predictive performance evident by mid-adolescence for fast and slow rates. A strong correlation among saccade, pupil, and blink responses during target prediction provides evidence of oculomotor coordination and dampened noradrenergic neuronal activity when generating rhythmic motor responses.


Assuntos
Adaptação Fisiológica/fisiologia , Piscadela/fisiologia , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Adolescente , Criança , Feminino , Humanos , Masculino , Estimulação Luminosa , Pupila , Adulto Jovem
10.
Mov Disord ; 36(7): 1720-1726, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33754406

RESUMO

BACKGROUND: Parkinson's disease (PD) patients exhibit deficits in saccade performance, pupil function, and blink rate. Isolated REM (rapid eye movement) Sleep Behavior Disorder (RBD) is a harbinger to PD making them candidates to investigate for early oculomotor abnormalities as PD biomarkers. OBJECTIVES: We tested whether saccade, pupillary, and blink responses in RBD were similar to PD. METHODS: RBD (n = 22), PD (n = 22) patients, and healthy controls (CTRL) (n = 74) were studied with video-based eye-tracking. RESULTS: RBD patients did not have significantly different saccadic behavior compared to CTRL, but PD patients differed from CTRL and RBD. Both patient groups had significantly lower blink rates, dampened pupil constriction, and dilation responses compared to CTRL. CONCLUSION: RBD and PD patients had altered pupil and blink behavior compared to CTRL. Because RBD saccade parameters were comparable to CTRL, pupil and blink brain areas may be impacted before saccadic control areas, making them potential prodromal PD biomarkers. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Encéfalo , Humanos , Doença de Parkinson/complicações , Pupila , Movimentos Sacádicos
11.
Front Hum Neurosci ; 14: 562712, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362487

RESUMO

Studying the typical development of reading is key to understanding the precise deficits that underlie reading disabilities. An important correlate of efficient reading is the speed of naming arrays of simple stimuli such as letters and pictures. In this cross-sectional study, we examined developmental changes in visual processing that occurs during letter and object naming from childhood to early adulthood in terms of behavioral task efficiency, associated articulation and eye movement parameters, and the coordination between them, as measured by eye-voice span in both the spatial and temporal domains. We used naming speed (NS) tasks, in which participants were required to name sets of letters or simple objects as quickly and as accurately as possible. Single stimulus manipulations were made to these tasks to make the stimuli either more visually and/or phonologically similar to one another in order to examine how these manipulations affected task performance and the coordination between speech and eye movements. Across development there was an increased efficiency in speech and eye movement performance and their coordination in both the spatial and temporal domains. Furthermore, manipulations to the phonological and visual similarity of specific letter and object stimuli revealed that orthographic processing played a greater role than phonological processing in performance, with the contribution of phonological processing diminishing across development. This comprehensive typical developmental trajectory provides a benchmark for clinical populations to elucidate the nature of the cognitive dysfunction underlying reading difficulties.

12.
Brain Commun ; 2(2): fcaa173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33305260

RESUMO

We examined the naming speed performance of 18 typically achieving and 16 dyslexic adults while simultaneously recording eye movements, articulations and fMRI data. Naming speed tasks, which require participants to name a list of letters or objects, have been proposed as a proxy for reading and are thought to recruit similar reading networks in the left hemisphere of the brain as more complex reading tasks. We employed letter and object naming speed tasks, with task manipulations to make the stimuli more or less phonologically and/or visually similar. Compared to typically achieving readers, readers with dyslexia had a poorer behavioural naming speed task performance, longer fixation durations, more regressions and increased activation in areas of the reading network in the left-hemisphere. Whereas increased network activation was positively associated with performance in dyslexics, it was negatively related to performance in typically achieving readers. Readers with dyslexia had greater bilateral activation and recruited additional regions involved with memory, namely the amygdala and hippocampus; in contrast, the typically achieving readers additionally activated the dorsolateral prefrontal cortex. Areas within the reading network were differentially activated by stimulus manipulations to the naming speed tasks. There was less efficient naming speed behavioural performance, longer fixation durations, more regressions and increased neural activity when letter stimuli were both phonologically and visually similar. Discussion focuses on the differences in activation within the reading network, how they are related to behavioural task differences, and how progress in furthering the understanding of the relationship between behavioural performance and brain activity can change the overall trajectories of children with reading difficulties by contributing to both early identification and remediation processes.

13.
Biol Psychol ; 153: 107901, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389837

RESUMO

A salient stimulus can trigger a coordinated orienting response consisting of a saccade, pupil, and microsaccadic responses. Saliency models predict that the degree of visual conspicuity of all visual stimuli guides visual orienting. By presenting a multiple-item array that included an oddball colored item (pop-out), randomly mixed colored items (mixed-color), or single-color items (single-color), we examined the effects of saliency and priority (saliency + relevancy) on pupil size and microsaccade responses. Larger pupil responses were produced in the pop-out compared to the mixed-color or single-color conditions after stimulus presentation. However, the saliency modulation on microsaccades was not significant. Furthermore, although goal-relevancy information did not modulate pupil responses and microsaccade rate, microsaccade direction was biased toward the pop-out item when it was the subsequent saccadic target. Together, our results demonstrate saliency modulation on pupil size and priority effects on microsaccade direction during visual pop-out.


Assuntos
Pupila/fisiologia , Movimentos Sacádicos/fisiologia , Cor , Feminino , Fixação Ocular , Humanos , Masculino , Estimulação Luminosa , Percepção Visual , Adulto Jovem
14.
Hum Brain Mapp ; 41(7): 1934-1949, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31916374

RESUMO

Our ability to control and inhibit automatic behaviors is crucial for negotiating complex environments, all of which require rapid communication between sensory, motor, and cognitive networks. Here, we measured neuromagnetic brain activity to investigate the neural timing of cortical areas needed for inhibitory control, while 14 healthy young adults performed an interleaved prosaccade (look at a peripheral visual stimulus) and antisaccade (look away from stimulus) task. Analysis of how neural activity relates to saccade reaction time (SRT) and occurrence of direction errors (look at stimulus on antisaccade trials) provides insight into inhibitory control. Neuromagnetic source activity was used to extract stimulus-aligned and saccade-aligned activity to examine temporal differences between prosaccade and antisaccade trials in brain regions associated with saccade control. For stimulus-aligned antisaccade trials, a longer SRT was associated with delayed onset of neural activity within the ipsilateral parietal eye field (PEF) and bilateral frontal eye field (FEF). Saccade-aligned activity demonstrated peak activation 10ms before saccade-onset within the contralateral PEF for prosaccade trials and within the bilateral FEF for antisaccade trials. In addition, failure to inhibit prosaccades on anti-saccade trials was associated with increased activity prior to saccade onset within the FEF contralateral to the peripheral stimulus. This work on dynamic activity adds to our knowledge that direction errors were due, at least in part, to a failure to inhibit automatic prosaccades. These findings provide novel evidence in humans regarding the temporal dynamics within oculomotor areas needed for saccade programming and the role frontal brain regions have on top-down inhibitory control.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Movimentos Sacádicos , Adulto , Mapeamento Encefálico , Potenciais Evocados/fisiologia , Movimentos Oculares/fisiologia , Feminino , Lobo Frontal/fisiologia , Lateralidade Funcional/fisiologia , Humanos , Inibição Psicológica , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Campos Visuais , Adulto Jovem
15.
Eur J Neurosci ; 51(11): 2277-2298, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31912932

RESUMO

We combined fMRI with eye tracking and speech recording to examine the neural and cognitive mechanisms that underlie reading. To simplify the study of the complex processes involved during reading, we used naming speed (NS) tasks (also known as rapid automatized naming or RAN) as a focus for this study, in which average reading right-handed adults named sets of stimuli (letters or objects) as quickly and accurately as possible. Due to the possibility of spoken output during fMRI studies creating motion artifacts, we employed both an overt session and a covert session. When comparing the two sessions, there were no significant differences in behavioral performance, sensorimotor activation (except for regions involved in the motor aspects of speech production) or activation in regions within the left-hemisphere-dominant neural reading network. This established that differences found between the tasks within the reading network were not attributed to speech production motion artifacts or sensorimotor processes. Both behavioral and neuroimaging measures showed that letter naming was a more automatic and efficient task than object naming. Furthermore, specific manipulations to the NS tasks to make the stimuli more visually and/or phonologically similar differentially activated the reading network in the left hemisphere associated with phonological, orthographic and orthographic-to-phonological processing, but not articulatory/motor processing related to speech production. These findings further our understanding of the underlying neural processes that support reading by examining how activation within the reading network differs with both task performance and task characteristics.


Assuntos
Leitura , Fala , Cognição , Linguística , Imageamento por Ressonância Magnética
16.
Brain Imaging Behav ; 14(6): 2450-2463, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493141

RESUMO

Children with ADHD show significant deficits in response inhibition. A leading hypothesis suggests prefrontal hypoactivation as a possible cause, though, there is conflicting evidence. We tested the hypoactivation hypothesis by analyzing the response inhibition process within the oculomotor system. Twenty-two children diagnosed with ADHD and twenty control (CTRL) children performed the antisaccade task while undergoing an fMRI study with concurrent eye tracking. This task included a preparatory stage that cued a prosaccade (toward a stimuli) or an antisaccade (away from a stimuli) without an actual presentation of a peripheral target. This allowed testing inhibitory control without the confounding activation from an actual response. The ADHD group showed longer reaction times and more antisaccade direction errors. While both groups showed activations in saccade network areas, the ADHD showed significant hyperactivation in the dorsolateral prefrontal cortex during the preparatory stage. No other areas in the saccade network had significant activation differences between groups. Further ADHD group analysis OFF and ON stimulant medication did not show drug-related activation differences. However, they showed a significant correlation between the difference in OFF/ON preparatory activation in the precuneus, and a decrease in the number of antisaccade errors. These results do not support the hypoactivity hypothesis as an inhibitory control deficit general explanation, but instead suggest less efficiency during the inhibitory period of the antisaccade task in children. Our findings contrast with previous results in ADHD adults showing decreased preparatory antisaccade activity, suggesting a significant age-dependent maturation effect associated to the inhibitory response in the oculomotor system.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Criança , Humanos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Tempo de Reação , Movimentos Sacádicos
17.
Cortex ; 121: 89-103, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550618

RESUMO

The ability to anticipate events and execute motor commands prior to a sensory event is an essential capability for human's everyday life. This implicitly learned anticipatory behavior depends on the past performance of repeated sensorimotor interactions timed with external cues. This kind of predictive behavior has been shown to be compromised in neurological disorders such as Huntington disease (HD), in which neural atrophy includes key cortical and basal ganglia regions. To investigate the neural basis of the anticipatory behavioral deficits in HD we used a predictive-saccade paradigm that requires predictive control to generate saccades in a metronomic temporal pattern. This is ideal because the integrity of the oculomotor network that includes the striatum and prefrontal, parietal, occipital and temporal cortices can be analyzed using structural MRI. Our results showed that the HD patients had severe predictive saccade deficits (i.e., an inability to reduce saccade reaction time in predictive condition), which are accentuated in patients with more severe motor deterioration. Structural imaging analyses revealed that these anticipatory deficits correlated with grey-matter atrophy in frontal, parietal-occipital and striatal regions. These findings indicate that the predictive saccade control deficits in HD are related to an extended cortico-striatal atrophy. This suggests that eye movement measurement could be a reliable marker of the progression of cognitive deficits in HD.


Assuntos
Atrofia/patologia , Transtornos Cognitivos/patologia , Doença de Huntington/patologia , Aprendizagem/fisiologia , Adulto , Idoso , Atrofia/fisiopatologia , Encéfalo/patologia , Transtornos Cognitivos/fisiopatologia , Feminino , Substância Cinzenta/patologia , Humanos , Doença de Huntington/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia , Tempo de Reação
18.
Front Neurol ; 9: 1029, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559707

RESUMO

Arousal level changes constantly and it has a profound influence on performance during everyday activities. Fluctuations in arousal are regulated by the autonomic nervous system, which is mainly controlled by the balanced activity of the parasympathetic and sympathetic systems, commonly indexed by heart rate (HR) and galvanic skin response (GSR), respectively. Although a growing number of studies have used pupil size to indicate the level of arousal, research that directly examines the relationship between pupil size and HR or GSR is limited. The goal of this study was to understand how pupil size is modulated by autonomic arousal. Human participants fixated various emotional face stimuli, of which low-level visual properties were carefully controlled, while their pupil size, HR, GSR, and eye position were recorded simultaneously. We hypothesized that a positive correlation between pupil size and HR or GSR would be observed both before and after face presentation. Trial-by-trial positive correlations between pupil diameter and HR and GSR were found before face presentation, with larger pupil diameter observed on trials with higher HR or GSR. However, task-evoked pupil responses after face presentation only correlated with HR. Overall, these results demonstrated a trial-by-trial relationship between pupil size and HR or GSR, suggesting that pupil size can be used as an index for arousal level involuntarily regulated by the autonomic nervous system.

19.
Brain Cogn ; 124: 1-13, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29698907

RESUMO

Despite distinct diagnostic criteria, attention-deficit hyperactivity disorder (ADHD) and bipolar disorder (BD) share cognitive and emotion processing deficits that complicate diagnoses. The goal of this study was to use an emotional saccade task to characterize executive functioning and emotion processing in adult ADHD and BD. Participants (21 control, 20 ADHD, 20 BD) performed an interleaved pro/antisaccade task (look toward vs. look away from a visual target, respectively) in which the sex of emotional face stimuli acted as the cue to perform either the pro- or antisaccade. Both patient groups made more direction (erroneous prosaccades on antisaccade trials) and anticipatory (saccades made before cue processing) errors than controls. Controls exhibited lower microsaccade rates preceding correct anti- vs. prosaccade initiation, but this task-related modulation was absent in both patient groups. Regarding emotion processing, the ADHD group performed worse than controls on neutral face trials, while the BD group performed worse than controls on trials presenting faces of all valence. These findings support the role of fronto-striatal circuitry in mediating response inhibition deficits in both ADHD and BD, and suggest that such deficits are exacerbated in BD during emotion processing, presumably via dysregulated limbic system circuitry involving the anterior cingulate and orbitofrontal cortex.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtorno Bipolar/psicologia , Emoções , Função Executiva , Expressão Facial , Movimentos Sacádicos , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/fisiopatologia , Corpo Estriado/fisiopatologia , Emoções/fisiologia , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Inibição Psicológica , Sistema Límbico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Movimentos Sacádicos/fisiologia , Adulto Jovem
20.
Neuroimage ; 165: 92-101, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28988829

RESUMO

Cognitive decline during aging includes impairments in frontal executive functions like reduced inhibitory control. However, decline is not uniform across the population, suggesting individual brain response variability to the aging process. Here we tested the hypothesis, within the oculomotor system, that older adults compensate for age-related neural alterations by changing neural activation levels of the oculomotor areas, or even by recruiting additional areas to assist with cognitive performance. We established that the observed changes had to be related to better cognitive performance to be considered as compensatory. To probe this hypothesis we used the antisaccade paradigm and analyzed the effect of aging on brain activations during the inhibition of prepotent responses to visual stimuli. While undergoing a fMRI scan with concurrent eye tracking, 25 young adults (21.7 y/o ± 1.9 SDM) and 25 cognitively normal older adults (66.2 y/o ± 9.8 SDM) performed an interleaved pro/antisaccade task consisting of a preparatory stage and an execution stage. Compared to young adults, older participants showed a larger increase in antisaccade reaction times, while also generating more antisaccade direction errors. BOLD signal analyses during the preparatory stage, when response inhibition processes are established to prevent an automatic response, showed decreased activations in the anterior cingulate and the supplementary eye fields in the older group. Moreover, older adults also showed additional recruitment of the frontal pole not seen in the younger group, and larger activations in the dorsolateral prefrontal cortex during antisaccade preparation. Additional analyses to address the performance variability in the older group showed distinct behavioral-BOLD signal correlations. Larger activations in the saccade network, including the frontal pole, positively correlated with faster antisaccade reaction times, suggesting a functional recruitment of this area. However, only the activation in the dorsolateral prefrontal cortex during the antisaccade events showed a negative correlation with the number of errors across older adults. These findings support the presence of two dissociable age-related plastic mechanisms that result in different behavioral outcomes. One related to the additional recruitment of neural resources within anterior pole to facilitate modulation of cognitive responses like faster antisaccade reaction times, and another related to increased activation of the dorsolateral prefrontal cortex resulting in a better inhibitory control in aging.


Assuntos
Envelhecimento/fisiologia , Função Executiva/fisiologia , Córtex Pré-Frontal/fisiopatologia , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...