Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 101(43): 15279-84, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15492229

RESUMO

The incorporation of lipophilic ligands into the bilayer membrane of vesicles offers the possibility to induce, upon binding of suitable metal ions, a variety of processes, in particular vesicle aggregation and fusion and generation of vesicle arrays, under the control of specific metal-ligand recognition events. Synthetic bipyridine lipoligands Bn bearing a bipyridine unit as head group were prepared and incorporated into large unilamellar vesicles. The addition of Ni2+ or Co2+ metal ions led to the formation of complexes MBn and MBn2 followed by spontaneous fusion to generate giant multilamellar vesicles. The metal ion complexation was followed by UV spectroscopy and the progressive fusion could be visualized by optical dark-field and fluorescence microscopies. Vesicle fusion occurred without leakage of the aqueous compartments and resulted in the formation of multilamellar giant vesicles because of the stacking of the lipoligands Bn. The fusion process required a long enough oligoethylene glycol spacer and a minimal concentration of lipoligand within the vesicle membrane. Metallosupramolecular systems such as the present one offer an attractive way to induce selective intervesicular processes, such as vesicle fusion, under the control of molecular recognition between specific metal ions and lipoligands incorporated in the bilayer membrane. They provide an approach to the design of artificial "tissue-mimetics" through the generation of polyvesicular arrays of defined architecture and to the control of their functional properties.


Assuntos
Metais/metabolismo , Varredura Diferencial de Calorimetria , Cátions , Ligantes , Luz , Bicamadas Lipídicas , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Espalhamento de Radiação , Espectrofotometria Ultravioleta
2.
Chemistry ; 10(9): 2342-50, 2004 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-15112223

RESUMO

The aim of the present work was to design functionalized lipidic membranes that can selectively interact with lanthanide ions at the interface and to exploit the interaction between membranes induced by this molecular-recognition process with a view to building up self-assembled vesicles or controlling the permeability of the membrane to lanthanide ions. Amphiphilic molecules bearing a beta-diketone unit as head group were synthesized and incorporated into phospholipidic vesicles. Binding of Eu(III) ions to the amphiphilic ligand can lead to formation of a complex involving ligands of the same vesicle membrane (intravesicular complex) or of two different vesicles (intervesicular complex). The effect of Eu(III) ions on vesicle behavior was studied by complementary techniques such as fluorimetry, light scattering, and electron microscopy. The formation of an intravesicular luminescent Eu/beta-diketone ligand (1/2) complex was demonstrated. The linear increase in the binding constant with increasing concentration of ligands in the membrane revealed a cooperative effect of the ligands distributed in the vesicle membrane. The luminescence of this complex can be exploited to monitor the kinetics of complexation at the interface of the vesicles, as well as ion transport across the membrane. By encapsulation of 2,6-dipicolinic acid (DPA) as a competing ligand which forms a luminescent Eu/DPA complex, the kinetics of ion transport across the membrane could be followed. These functional vesicles were shown to be an efficient system for the selective transport of Eu(III) ions across a membrane with assistance by beta-diketone ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...