Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nat Commun ; 15(1): 3728, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697991

RESUMO

With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Radiocirurgia , Radiocirurgia/métodos , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Melanoma/patologia , Adulto , Resultado do Tratamento , Carga Tumoral , Idoso de 80 Anos ou mais , Falha de Tratamento , Estudos Retrospectivos
2.
J Appl Clin Med Phys ; 25(4): e14259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317597

RESUMO

BACKGROUND: The treatment planning process from segmentation to producing a deliverable plan is time-consuming and labor-intensive. Existing solutions automate the segmentation and planning processes individually. The feasibility of combining auto-segmentation and auto-planning for volumetric modulated arc therapy (VMAT) for rectal cancers in an end-to-end process is not clear. PURPOSE: To create and clinically evaluate a complete end-to-end process for auto-segmentation and auto-planning of VMAT for rectal cancer requiring only the gross tumor volume contour and a CT scan as inputs. METHODS: Patient scans and data were retrospectively selected from our institutional records for patients treated for malignant neoplasm of the rectum. We trained, validated, and tested deep learning auto-segmentation models using nnU-Net architecture for clinical target volume (CTV), bowel bag, large bowel, small bowel, total bowel, femurs, bladder, bone marrow, and female and male genitalia. For the CTV, we identified 174 patients with clinically drawn CTVs. We used data for 18 patients for all structures other than the CTV. The structures were contoured under the guidance of and reviewed by a gastrointestinal (GI) radiation oncologist. The predicted results for CTV in 35 patients and organs at risk (OAR) in six patients were scored by the GI radiation oncologist using a five-point Likert scale. For auto-planning, a RapidPlan knowledge-based planning solution was modeled for VMAT delivery with a prescription of 25 Gy in five fractions. The model was trained and tested on 20 and 34 patients, respectively. The resulting plans were scored by two GI radiation oncologists using a five-point Likert scale. Finally, the end-to-end pipeline was evaluated on 16 patients, and the resulting plans were scored by two GI radiation oncologists. RESULTS: In 31 of 35 patients, CTV contours were clinically acceptable without necessary modifications. The CTV achieved a Dice similarity coefficient of 0.85 (±0.05) and 95% Hausdorff distance of 15.25 (±5.59) mm. All OAR contours were clinically acceptable without edits, except for large and small bowel which were challenging to differentiate. However, contours for total, large, and small bowel were clinically acceptable. The two physicians accepted 100% and 91% of the auto-plans. For the end-to-end pipeline, the two physicians accepted 88% and 62% of the auto-plans. CONCLUSIONS: This study demonstrated that the VMAT treatment planning technique for rectal cancer can be automated to generate clinically acceptable and safe plans with minimal human interventions.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias Retais , Humanos , Masculino , Feminino , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Dosagem Radioterapêutica , Neoplasias Retais/radioterapia , Reto , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Radiother Oncol ; 193: 110119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311030

RESUMO

INTRODUCTION: Sarcoma spinal metastases (SSM) are particularly difficult to manage given their poor response rates to chemotherapy and inherent radioresistance. We evaluated outcomes in a cohort of patients with SSM uniformly treated using single-fraction simultaneous-integrated-boost (SIB) spine stereotactic radiosurgery (SSRS). MATERIALS AND METHODS: A retrospective review was conducted at a single tertiary institution treated with SSRS for SSM between April 2007-April 2023. 16-24 Gy was delivered to the GTV and 16 Gy uniformly to the CTV. Kaplan-Meier analysis was conducted to assess time to progression of disease (PD) with proportionate hazards modelling used to determine hazard ratios (HR) and respective 95 % confidence intervals (CI). RESULTS: 70 patients with 100 lesions underwent SSRS for SSM. Median follow-up was 19.3 months (IQR 7.7-27.8). Median age was 55 years (IQR42-63). Median GTV and CTVs were 14.5 cm3 (IQR 5-32) and 52.7 cm3 (IQR 29.5-87.5) respectively. Median GTV prescription dose and biologically equivalent dose (BED) [α/ß = 10] was 24 Gy and 81.6 Gy respectively. 85 lesions received 24 Gy to the GTV. 27 % of patients had Bilsky 1b or greater disease. 16 of 100 lesions recurred representing a crude local failure rate of 16 % with a median time to failure of 10.4 months (IQR 5.7-18) in cases which failed locally. 1-year actuarial local control (LC) was 89 %. Median overall survival (OS) was 15.3 months (IQR 7.7-25) from SSRS. Every 1 Gy increase in GTV absolute minimum dose (DMin) across the range (5.8-25 Gy) was associated with a reduced risk of local failure (HR = 0.871 [95 % CI 0.782-0.97], p = 0.009). 9 % of patients developed vertebral compression fractures at a median of 13 months post SSRS (IQR 7-25). CONCLUSION: This study represents one of the most homogenously treated and the largest cohorts of patients with SSM treated with single-fraction SSRS. Despite inherent radioresistance, SSRS confers durable and high rates of local control in SSM without unexpected long-term toxicity rates.


Assuntos
Fraturas por Compressão , Segunda Neoplasia Primária , Radiocirurgia , Sarcoma , Fraturas da Coluna Vertebral , Neoplasias da Coluna Vertebral , Humanos , Pessoa de Meia-Idade , Radiocirurgia/efeitos adversos , Fraturas da Coluna Vertebral/etiologia , Fraturas por Compressão/etiologia , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/secundário , Recidiva Local de Neoplasia/cirurgia , Sarcoma/radioterapia , Sarcoma/cirurgia , Estudos Retrospectivos , Segunda Neoplasia Primária/etiologia
4.
J Neurooncol ; 164(2): 377-386, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37667065

RESUMO

PURPOSE: The management of chordoma or chondrosarcoma involving the spine is often challenging due to adjacent critical structures and tumor radioresistance. Spine stereotactic radiosurgery (SSRS) has radiobiologic advantages compared with conventional radiotherapy, though there is limited evidence on SSRS in this population. We sought to characterize the long-term local control (LC) of patients treated with SSRS. METHODS: We retrospectively reviewed patients with chordoma or chondrosarcoma treated with dose-escalated SSRS, defined as 24 Gy in 1 fraction to the gross tumor volume. Overall survival (OS) was calculated by Kaplan-Meier functions. Competing risk analysis using the cause-specific hazard function estimated LC time. RESULTS: Fifteen patients, including 12 with chordoma and 3 with chondrosarcoma, with 22 lesions were included. SSRS intent was definitive, single-modality in 95% of cases (N = 21) and post-operative in 1 case (5%). After a median censored follow-up time of 5 years (IQR 4 to 8 years), median LC time was not reached (IQR 8 years to not reached), with LC rates of 100%, 100%, and 90% at 1 year, 2 years, and 5 years. The median OS was 8 years (IQR 3 years to not reached). Late grade 3 toxicity occurred after 23% of treatments (N = 5, fracture), all of which were managed successfully with stabilization. CONCLUSION: Definitive dose-escalated SSRS to 24 Gy in 1 fraction appears to be a safe and effective treatment for achieving durable local control in chordoma or chondrosarcoma involving the spine, and may hold particular importance as a low-morbidity alternative to surgery in selected cases.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Cordoma , Radiocirurgia , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/efeitos adversos , Cordoma/radioterapia , Cordoma/cirurgia , Cordoma/patologia , Estudos Retrospectivos , Resultado do Tratamento , Condrossarcoma/radioterapia , Condrossarcoma/cirurgia , Condrossarcoma/patologia , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/cirurgia
5.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37402581

RESUMO

BACKGROUND: Up to 20% of patients with non-small cell lung cancer (NSCLC) develop brain metastasis (BM), for which the current standard of care is radiation therapy with or without surgery. There are no prospective data on the safety of stereotactic radiosurgery (SRS) concurrent with immune checkpoint inhibitor therapy for BM. This is the safety cohort of the phase I/II investigator-initiated trial of SRS with nivolumab and ipilimumab for patients with BM from NSCLC. PATIENTS AND METHODS: This single-institution study included patients with NSCLC with active BM amenable to SRS. Brain SRS and systemic therapy with nivolumab and ipilimumab were delivered concurrently (within 7 days). The endpoints were safety and 4-month intracranial progression-free survival (PFS). RESULTS: Thirteen patients were enrolled in the safety cohort, 10 of whom were evaluable for dose-limiting toxicities (DLTs). Median follow-up was 23 months (range 9.7-24.3 months). The median interval between systemic therapy and radiation therapy was 3 days. Only one patient had a DLT; hence, predefined stopping criteria were not met. In addition to the patient with DLT, three patients had treatment-related grade ≥3 adverse events, including elevated liver function tests, fatigue, nausea, adrenal insufficiency, and myocarditis. One patient had a confirmed influenza infection 7 months after initiation of protocol treatment (outside the DLT assessment window), leading to pneumonia and subsequent death from hemophagocytic lymphohistiocytosis. The estimated 4-month intracranial PFS rate was 70.7%. CONCLUSION: Concurrent brain SRS with nivolumab/ipilimumab was safe for patients with active NSCLC BM. Preliminary analyses of treatment efficacy were encouraging for intracranial treatment response.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/uso terapêutico , Radiocirurgia/métodos , Terapia Combinada/efeitos adversos
6.
Radiat Oncol J ; 41(1): 12-22, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37013414

RESUMO

PURPOSE: There has been limited work assessing the use of re-irradiation (re-RT) for local failure following stereotactic spinal radiosurgery (SSRS). We reviewed our institutional experience of conventionally-fractionated external beam radiation (cEBRT) for salvage therapy following SSRS local failure. MATERIALS AND METHODS: We performed a retrospective review of 54 patients that underwent salvage conventional re-RT at previously SSRS-treated sites. Local control following re-RT was defined as the absence of progression at the treated site as determined by magnetic resonance imaging. RESULTS: Competing risk analysis for local failure was performed using a Fine-Gray model. The median follow-up time was 25 months and median overall survival (OS) was 16 months (95% confidence interval [CI], 10.8-24.9 months) following cEBRT re-RT. Multivariable Cox proportional-hazards analysis revealed Karnofsky performance score prior to re-RT (hazard ratio [HR] = 0.95; 95% CI, 0.93-0.98; p = 0.003) and time to local failure (HR = 0.97; 95% CI, 0.94-1.00; p = 0.04) were associated with longer OS, while male sex (HR = 3.92; 95% CI, 1.64-9.33; p = 0.002) was associated with shorter OS. Local control at 12 months was 81% (95% CI, 69.3-94.0). Competing risk multivariable regression revealed radioresistant tumors (subhazard ratio [subHR] = 0.36; 95% CI, 0.15-0.90; p = 0.028) and epidural disease (subHR = 0.31; 95% CI, 0.12-0.78; p =0.013) were associated with increased risk of local failure. At 12 months, 91% of patients maintained ambulatory function. CONCLUSION: Our data suggest that cEBRT following SSRS local failure can be used safely and effectively. Further investigation is needed into optimal patient selection for cEBRT in the retreatment setting.

7.
Pract Radiat Oncol ; 13(1): e7-e13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36604100

RESUMO

PURPOSE: Intensity modulated radiation therapy (RT) for spine metastases using a simultaneous integrated boost (SSIB) was shown as an alternative to the treatment of select osseous metastases that are not amenable to spine stereotactic radiosurgery. We sought to update our clinical experience using SSIB in patients for whom dose escalation was warranted but spine stereotactic radiosurgery was not feasible. METHODS AND MATERIALS: A total of 58 patients with 63 spinal metastatic sites treated with SSIB between 2012 and 2021 were retrospectively reviewed. The gross tumor volume and clinical target volume were prescribed 40 and 30 Gy in 10 fractions, respectively. RESULTS: The median follow-up time was 31 months. Of 79% of patients who reported pain before RT with SSIB, 82% reported an improvement following treatment. Patient-reported pain scores on a 10-point scale revealed a significant decrease in pain at 1, 3, 6, and 12 months after SSIB (P < .0001). Additionally, there were limited toxicities; only 1 patient suffered grade 3 toxicity (pain) following RT. There were no reports of radiation-induced myelopathy at last follow-up, and 8 patients (13%) experienced a vertebral column fracture post-treatment. Local control was 88% (95% confidence interval [CI], 80%-98%) and 74% (95% CI, 59%-91%) at 1 and 2 years, respectively. Overall survival was 64% (95% CI, 53%-78%) and 45% (95% CI, 34%-61%) at 1 and 2 years, respectively. The median overall survival was 18 months (95% CI, 13-27 months). Multivariable analysis using patient, tumor, and dosimetric characteristics revealed that a higher Karnofsky performance status before RT (hazard ratio, 0.44, 0.22-0.89; P = .02) was associated with longer survival. CONCLUSIONS: These data demonstrate excellent pain relief and local control with limited acute toxicities following treatment with RT using SSIB to 40 Gy. Collectively, our data suggest that dose escalation to spine metastases using SSIB can be safe and efficacious for patients, especially those with radioresistant disease. Further investigation is warranted to validate these findings.


Assuntos
Neoplasias da Coluna Vertebral , Humanos , Estudos Retrospectivos , Neoplasias da Coluna Vertebral/secundário , Coluna Vertebral/patologia , Manejo da Dor/métodos , Dor , Resultado do Tratamento
8.
Cancers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672286

RESUMO

Since manual detection of brain metastases (BMs) is time consuming, studies have been conducted to automate this process using deep learning. The purpose of this study was to conduct a systematic review and meta-analysis of the performance of deep learning models that use magnetic resonance imaging (MRI) to detect BMs in cancer patients. A systematic search of MEDLINE, EMBASE, and Web of Science was conducted until 30 September 2022. Inclusion criteria were: patients with BMs; deep learning using MRI images was applied to detect the BMs; sufficient data were present in terms of detective performance; original research articles. Exclusion criteria were: reviews, letters, guidelines, editorials, or errata; case reports or series with less than 20 patients; studies with overlapping cohorts; insufficient data in terms of detective performance; machine learning was used to detect BMs; articles not written in English. Quality Assessment of Diagnostic Accuracy Studies-2 and Checklist for Artificial Intelligence in Medical Imaging was used to assess the quality. Finally, 24 eligible studies were identified for the quantitative analysis. The pooled proportion of patient-wise and lesion-wise detectability was 89%. Articles should adhere to the checklists more strictly. Deep learning algorithms effectively detect BMs. Pooled analysis of false positive rates could not be estimated due to reporting differences.

9.
Adv Radiat Oncol ; 8(1): 101085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36299565

RESUMO

Purpose: The clinical management of brain metastases after stereotactic radiosurgery (SRS) is difficult, because a physician must review follow-up magnetic resonance imaging (MRI) scans to determine treatment outcome, which is often labor intensive. The purpose of this study was to develop an automated framework to contour brain metastases in MRI to help treatment planning for SRS and understand its limitations. Methods and Materials: Two self-adaptive nnU-Net models trained on postcontrast 3-dimensional T1-weighted MRI scans from patients who underwent SRS were analyzed. Performance was evaluated by computing positive predictive value (PPV), sensitivity, and Dice similarity coefficient (DSC). The training and testing sets included 3482 metastases on 845 patient MRI scans and 930 metastases on 206 patient MRI scans, respectively. Results: In the per-patient analysis, PPV was 90.1% ± 17.7%, sensitivity 88.4% ± 18.0%, DSC 82.2% ± 9.5%, and false positive (FP) 0.4 ± 1.0. For large metastases (≥6 mm), the per-patient PPV was 95.6% ± 17.5%, sensitivity 94.5% ± 18.1%, DSC 86.8% ± 7.5%, and FP 0.1 ± 0.4. The quality of autosegmented true-positive (TP) contours was also assessed by 2 physicians using a 5-point scale for clinical acceptability. Seventy-five percent of contours were assigned scores of 4 or 5, which shows that contours could be used as-is in clinical application, and the remaining 25% were assigned a score of 3, which means they needed minor editing only. Notably, a deep dive into FPs indicated that 9% were TP metastases not identified on the original radiology review, but identified on subsequent follow-up imaging (early detection). Fifty-four percent were real metastases (TP) that were identified but purposefully not contoured for target treatment, mainly because the patient underwent whole-brain radiation therapy before/after SRS treatment. Conclusions: These findings show that our tool can help radiologists and radiation oncologists detect and contour tumors from MRI, make precise decisions about suspicious lesions, and potentially find lesions at early stages.

10.
J Appl Clin Med Phys ; 24(2): e13819, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36354957

RESUMO

PURPOSE: We developed and tested an automatic field-in-field (FIF) solution for whole-brain radiotherapy (WBRT) planning that creates a homogeneous dose distribution by minimizing hotspots, resulting in clinically acceptable plans. METHODS: A configurable auto-planning algorithm was developed to automatically generate FIF WBRT plans independent of the treatment planning system. Configurable parameters include the definition of hotspots, target volume, maximum number of subfields, and minimum number of monitor units per field. This algorithm iteratively identifies a hotspot, creates two opposing subfields, calculates the dose, and optimizes the beam weight based on user-configured constraints of dose-volume histogram coverage and least-squared cost functions. The algorithm was retrospectively tested on 17 whole-brain patients. First, an in-house landmark-based automated beam aperture technique was used to generate the treatment fields and initial plans. Second, the FIF algorithm was employed to optimize the plans using physician-defined goals of 99.9% of the brain volume receiving 100% of the prescription dose (30 Gy in 10 fractions) and a target hotspot definition of 107% of the prescription dose. The final auto-optimized plans were assessed for clinical acceptability by an experienced radiation oncologist using a five-point scale. RESULTS: The FIF algorithm reduced the mean (± SD) plan hotspot percentage dose from 35.0 Gy (116.6%) ± 0.6 Gy (2.0%) to 32.6 Gy (108.8%) ± 0.4 Gy (1.2%). Also, it decreased the mean (± SD) hotspot V107% [cm3 ] from 959 ± 498 cm3 to 145 ± 224 cm3 . On average, plans were produced in 16 min without any user intervention. Furthermore, 76.5% of the auto-plans were clinically acceptable (needing no or minor stylistic edits), and all of them were clinically acceptable after minor clinically necessary edits. CONCLUSIONS: This algorithm successfully produced high-quality WBRT plans and can improve treatment planning efficiency when incorporated into an automatic planning workflow.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Estudos Retrospectivos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Encéfalo
11.
J Appl Clin Med Phys ; 23(11): e13804, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36210179

RESUMO

BACKGROUND: Spine stereotactic body radiation therapy (SBRT) uses highly conformal dose distributions and sharp dose gradients to cover targets in proximity to the spinal cord or cauda equina, which requires precise patient positioning and immobilization to deliver safe treatments. AIMS: Given some limitations with the BodyFIX system in our practice, we sought to evaluate the accuracy and efficiency of the Klarity SBRT patient immobilization system in comparison to the BodyFIX system. METHODS: Twenty-three patients with 26 metastatic spinal lesions (78 fractions) were enrolled in this prospective observational study with one of two systems - BodyFIX (n = 11) or Klarity (n = 12). All patients were initially set up to external marks and positioned to match bony anatomy on ExacTrac images. Table corrections given by ExacTrac during setup and intrafractional monitoring and deviations from pre- and posttreatment CBCT images were analyzed. RESULTS: For initial setup accuracy, the Klarity system showed larger differences between initial skin mark alignment and the first bony alignment on ExacTrac than BodyFIX, especially in the vertical (mean [SD] of 5.7 mm [4.1 mm] for Klarity vs. 1.9 mm [1.7 mm] for BodyFIX, p-value < 0.01) and lateral (5.4 mm [5.1 mm] for Klarity vs. 3.2 mm [3.2 mm] for BodyFIX, p-value 0.02) directions. For set-up stability, no significant differences (all p-values > 0.05) were observed in the maximum magnitude of positional deviations between the two systems. For setup efficiency, Klarity system achieved desired bony alignment with similar number of setup images and similar setup time (14.4 min vs. 15.8 min, p-value = 0.41). For geometric uncertainty, systematic and random errors were found to be slightly less with Klarity than with BodyFIX based on an analytical calculation. CONCLUSION: With image-guided correction of initial alignment by external marks, the Klarity system can provide accurate and efficient patient immobilization. It can be a promising alternative to the BodyFIX system for spine SBRT while providing potential workflow benefits depending on one's practice environment.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Imobilização/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Posicionamento do Paciente/métodos , Tomografia Computadorizada de Feixe Cônico
12.
J Appl Clin Med Phys ; 23(10): e13752, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36004700

RESUMO

PURPOSE: We investigated the feasibility of thoracic spine stereotactic body radiotherapy (SBRT) using the Elekta Unity magnetic resonance-guided linear accelerator (MRL) in patients who received prior radiotherapy. We hypothesized that Monaco treatment plans can improve the gross tumor volume minimum dose (GTVmin) with spinal cord preservation and maintain consistent plan quality during daily adaptation. METHODS: Pinnacle clinical plans for 10 patients who underwent thoracic spine SBRT (after prior radiotherapy) were regenerated in the Monaco treatment planning system for the Elekta Unity MRL using 9 and 13 intensity-modulated radiotherapy (IMRT) beams. Monaco adapt-to-position (ATP) and adapt-to-shape (ATS) workflow plans were generated using magnetic resonance imaging with a simulated daily positional setup deviation, and these adaptive plans were compared with Monaco reference plans. Plan quality measures included target coverage, Paddick conformity index, gradient index, homogeneity index, spinal cord D0.01cc , esophagus D0.01cc , lung V10, and skin D0.01cc . RESULTS: GTVmin values from the Monaco 9-beam and 13-beam plans were significantly higher than those from Pinnacle plans (p < 0.01) with similar spinal cord dose. Spinal cord D0.01cc , esophagus D0.01cc , and lung V10 did not statistically differ among the three plans. The electron-return effect did not induce remarkable dose effects around the lungs or skin. While in the ATP workflow, a large increase in GTVmin was observed at the cost of a 10%-50% increase in spinal cord D0.01cc , in the ATS workflow, the spinal cord dose increase was maintained within 3% of the reference plan. CONCLUSION: These findings show that MRL plans for thoracic spine SBRT are safe and feasible, allowing tumor dose escalation with spinal cord preservation and consistent daily plan adaptation using the ATS workflow. Careful plan review of hot spots and lung dose is necessary for safe MRL-based treatment.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Reirradiação , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/cirurgia , Aceleradores de Partículas , Radioterapia de Intensidade Modulada/métodos , Imageamento por Ressonância Magnética , Trifosfato de Adenosina , Dosagem Radioterapêutica
13.
J Appl Clin Med Phys ; 23(9): e13712, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35808871

RESUMO

PURPOSE: To develop an automated workflow for rectal cancer three-dimensional conformal radiotherapy (3DCRT) treatment planning that combines deep learning (DL) aperture predictions and forward-planning algorithms. METHODS: We designed an algorithm to automate the clinical workflow for 3DCRT planning with field aperture creations and field-in-field (FIF) planning. DL models (DeepLabV3+ architecture) were trained, validated, and tested on 555 patients to automatically generate aperture shapes for primary (posterior-anterior [PA] and opposed laterals) and boost fields. Network inputs were digitally reconstructed radiographs, gross tumor volume (GTV), and nodal GTV. A physician scored each aperture for 20 patients on a 5-point scale (>3 is acceptable). A planning algorithm was then developed to create a homogeneous dose using a combination of wedges and subfields. The algorithm iteratively identifies a hotspot volume, creates a subfield, calculates dose, and optimizes beam weight all without user intervention. The algorithm was tested on 20 patients using clinical apertures with varying wedge angles and definitions of hotspots, and the resulting plans were scored by a physician. The end-to-end workflow was tested and scored by a physician on another 39 patients. RESULTS: The predicted apertures had Dice scores of 0.95, 0.94, and 0.90 for PA, laterals, and boost fields, respectively. Overall, 100%, 95%, and 87.5% of the PA, laterals, and boost apertures were scored as clinically acceptable, respectively. At least one auto-plan was clinically acceptable for all patients. Wedged and non-wedged plans were clinically acceptable for 85% and 50% of patients, respectively. The hotspot dose percentage was reduced from 121% (σ = 14%) to 109% (σ = 5%) of prescription dose for all plans. The integrated end-to-end workflow of automatically generated apertures and optimized FIF planning gave clinically acceptable plans for 38/39 (97%) of patients. CONCLUSION: We have successfully automated the clinical workflow for generating radiotherapy plans for rectal cancer for our institution.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias Retais , Automação , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Retais/radioterapia
14.
Artigo em Inglês | MEDLINE | ID: mdl-35525723

RESUMO

OBJECTIVES: The Pediatric Normal Tissue Effects in the Clinic (PENTEC) pulmonary task force reviewed dosimetric and clinical factors associated with radiation therapy (RT)-associated pulmonary toxicity in children. METHODS: Comprehensive search of PubMed (1965-2020) was conducted to assess available evidence and predictive models of RT-induced lung injury in pediatric cancer patients (<21 years old). Lung dose for radiation pneumonitis (RP) was obtained from dose-volume histogram (DVH) data. RP grade was obtained from standard criteria. Clinical pulmonary outcomes were evaluated using pulmonary function tests (PFTs), clinical assessment, and questionnaires. RESULTS: More than 2,400 abstracts were identified; 460 articles had detailed treatment and toxicity data; and 11 articles with both detailed DVH and toxicity data were formally reviewed. Pooled cohorts treated during 1999 to 2016 included 277 and 507 patients age 0.04 to 22.7 years who were evaluable for acute and late RP analysis, respectively. After partial lung RT, there were 0.4% acute and 2.8% late grade 2, 0.4% acute and 0.8% late grade 3, and no grade 4 to 5 RP. RP risk after partial thoracic RT with mean lung dose (MLD) <14 Gy and total lung V20Gy <30% is low. Clinical and self-reported pulmonary outcomes data included 8,628 patients treated during 1970 to 2013, age 0 to 21.9 years. At a median 2.9- to 21.9-year follow-up, patients were often asymptomatic; abnormal PFTs were common and severity correlated with lung dose. At ≥10-year follow-up, multi-institutional studies suggested associations between total or ipsilateral lung doses >10 Gy and pulmonary complications and deaths. After whole lung irradiation (WLI), pulmonary toxicity is higher; no dose response relationship was identified. Bleomycin and other chemotherapeutics at current dose regimens do not contribute substantially to adverse pulmonary outcomes after partial lung irradiation but increase risk with WLI. CONCLUSIONS: After partial lung RT, acute pulmonary toxicity is uncommon; grade 2 to 3 RP incidences are <1%. Late toxicities, including subclinical/asymptomatic impaired pulmonary function, are more common (<4%). Incidence and severity appear to increase over time. Upon review of available literature, there appears to be low risk of pulmonary complications in children with MLD < 14 Gy and V20Gy <30% using standard fractionated RT to partial lung volumes. A lack of robust data limit guidance on lung dose/volume constraints, highlighting the need for additional work to define factors associated with RT-induced lung injury.

15.
J Appl Clin Med Phys ; 23(3): e13518, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994101

RESUMO

Online magnetic resonance (MR)-guided radiotherapy is expected to benefit brain stereotactic radiosurgery (SRS) due to superior soft tissue contrast and capability of daily adaptive planning. The purpose of this study was to investigate daily adaptive plan quality with setup variations and to perform an end-to-end test for brain SRS with multiple metastases treated with a 1.5-Tesla MR-Linac (MRL). The RTsafe PseudoPatient Prime brain phantom was used with a delineation insert that includes two predefined structures mimicking gadolinium contrast-enhanced brain lesions. Daily adaptive plans were generated using six preset and six random setup variations. Two adaptive plans per daily MR image were generated using the adapt-to-position (ATP) and adapt-to-shape (ATS) workflows. An adaptive patient plan was generated on a diagnostic MR image with simulated translational and rotational daily setup variation and was compared with the reference plan. All adaptive plans were compared with the reference plan using the target coverage, Paddick conformity index, gradient index (GI), Brain V12 or V20, optimization time and total monitor units. Target doses were measured as an end-to-end test with two ionization chambers inserted into the phantom. With preset translational variations, V12 from the ATS plan was 17% lower than that of the ATP plan. With a larger daily setup variation, GI and V12 of the ATS plan were 10% and 16% lower than those of the ATP plan, respectively. Compared to the ATP plans, the plan quality index of the ATS plans was more consistent with the reference plan, and within 5% in both phantom and patient plans. The differences between the measured and planned target doses were within 1% for both treatment workflows. Treating brain SRS using an MRL is feasible and could achieve satisfactory dosimetric goals. Setup uncertainties could be accounted for using online plan adaptation. The ATS workflow achieved better dosimetric results than the ATP workflow at the cost of longer optimization time.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Encéfalo , Humanos , Aceleradores de Partículas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
16.
Int J Radiat Oncol Biol Phys ; 112(2): 554-564, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509550

RESUMO

PURPOSE: Compared with photon cranial radiation therapy (X-CRT), proton cranial radiation therapy (P-CRT) offers potential advantages in limiting radiation-induced sequalae in the treatment of pediatric brain tumors. This study aims to identify cognitive, functional magnetic resonance and positron emission tomography imaging markers and molecular differences between the radiation modalities. METHODS AND MATERIALS: Juvenile rats received a single faction of 10 Gy (relative biological effectiveness-weighted dose) delivered with 6 MV X-CRT or at the midspread out Bragg peak of a 100 MeV P-CRT beam. At 3, 6, and 12 months post-CRT, executive function was measured using 5-choice serial reaction time task. At ∼12 months post-CRT, animals were imaged with 18F-Flurodeoxy-glucose positron emission tomography imaging followed by functional ex vivo magnetic resonance imaging and stained for markers of neuroinflammation. RESULTS: Irradiated animals had cognitive impairment with a higher number of omissions and lower incorrect and premature responses compared with sham (P ≤ .05). The accuracy of the animals' X-CRT was less than that of sham (P ≤ .001). No significant difference in rates of cognitive change were found between the radiation modalities. At 12 months post-CRT, glucose metabolism was significantly higher than sham in X-CRT (P = .04) but not P-CRT. Using diffusion tensor imaging, P-CRT brains were found to have higher white matter volume and fiber lengths compared with sham (P < .03). Only X-CRT animals had higher apparent diffusion coefficient values compared with sham (P = .04). P-CRT animals had more connectomic changes compared with X-CRT. Correlative analysis identified several imaging features with cognitive performance. Furthermore, microgliosis (P < .05), astrogliosis (P < .01), and myelin thinning (P <.05) were observed in both radiation modalities, with X-CRT showing slightly more inflammation. CONCLUSIONS: Both P-CRT and X-CRT lead to neurocognitive changes compared with sham. Although no significant difference was observed in neuroinflammation between the irradiated groups, differences were found in late-term glucose metabolism and brain connectome. Our results indicate that despite relative biological effectiveness weighting of the proton dose there are still differential effects which warrants further investigation.


Assuntos
Imagem de Tensor de Difusão , Prótons , Animais , Encéfalo/patologia , Cognição/efeitos da radiação , Irradiação Craniana/efeitos adversos , Imagem de Tensor de Difusão/métodos , Ratos
17.
J Appl Clin Med Phys ; 22(9): 94-102, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250715

RESUMO

The purpose of the study was to develop and clinically deploy an automated, deep learning-based approach to treatment planning for whole-brain radiotherapy (WBRT). We collected CT images and radiotherapy treatment plans to automate a beam aperture definition from 520 patients who received WBRT. These patients were split into training (n = 312), cross-validation (n = 104), and test (n = 104) sets which were used to train and evaluate a deep learning model. The DeepLabV3+ architecture was trained to automatically define the beam apertures on lateral-opposed fields using digitally reconstructed radiographs (DRRs). For the beam aperture evaluation, 1st quantitative analysis was completed using a test set before clinical deployment and 2nd quantitative analysis was conducted 90 days after clinical deployment. The mean surface distance and the Hausdorff distances were compared in the anterior-inferior edge between the clinically used and the predicted fields. Clinically used plans and deep-learning generated plans were evaluated by various dose-volume histogram metrics of brain, cribriform plate, and lens. The 1st quantitative analysis showed that the average mean surface distance and Hausdorff distance were 7.1 mm (±3.8 mm) and 11.2 mm (±5.2 mm), respectively, in the anterior-inferior edge of the field. The retrospective dosimetric comparison showed that brain dose coverage (D99%, D95%, D1%) of the automatically generated plans was 29.7, 30.3, and 32.5 Gy, respectively, and the average dose of both lenses was up to 19.0% lower when compared to the clinically used plans. Following the clinical deployment, the 2nd quantitative analysis showed that the average mean surface distance and Hausdorff distance between the predicted and clinically used fields were 2.6 mm (±3.2 mm) and 4.5 mm (±5.6 mm), respectively. In conclusion, the automated patient-specific treatment planning solution for WBRT was implemented in our clinic. The predicted fields appeared consistent with clinically used fields and the predicted plans were dosimetrically comparable.


Assuntos
Radioterapia de Intensidade Modulada , Encéfalo/diagnóstico por imagem , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
18.
Adv Radiat Oncol ; 6(4): 100708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124413

RESUMO

OBJECTIVES: Stereotactic radiosurgery is a common treatment for brain metastases and is typically planned on magnetic resonance imaging (MRI). However, the MR acquisition parameters used for patient selection and treatment planning for stereotactic radiosurgery can vary within and across institutions. In this work, we investigate the effect of MRI slice thickness on the detection and contoured volume of metastatic lesions in the brain. METHODS AND MATERIALS: A retrospective cohort of 28 images acquired with a slice thickness of 1 mm were resampled to simulate acquisitions at 2- and 3-mm slice thickness. A total of 102 metastases ranging from 0.0030 cc to 5.08 cc (75-percentile 0.36 cc) were contoured on the original images. All 3 sets of images were recontoured by experienced physicians. RESULTS: Of all the images detected and contoured on the 1 mm images, 3% of lesions were missed on the 2 mm images, and 13% were missed on the 3 mm images. One lesion that was identified on both the 2 mm and 3 mm images was determined to be a blood vessel on the 1 mm images. Additionally, the lesions were contoured 11% larger on the 2 mm and 43% larger on the 3 mm images. CONCLUSIONS: Using images with a slice thickness >1 mm effects detection and segmentation of brain lesions, which can have an important effect on patient management and treatment outcomes.

19.
J Natl Compr Canc Netw ; 19(7): 805-813, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33878727

RESUMO

BACKGROUND: Palliative radiotherapy (RT) is effective, but some patients die during treatment or too soon afterward to experience benefit. This study investigates end-of-life RT patterns to inform shared decision-making and facilitate treatment consistent with palliative goals. MATERIALS AND METHODS: All patients who died ≤6 months after initiating palliative RT at an academic cancer center between 2015 and 2018 were identified. Associations with time-to-death, early mortality (≤30 days), and midtreatment mortality were analyzed. RESULTS: In total, 1,620 patients died ≤6 months from palliative RT initiation, including 574 (34%) deaths at ≤30 days and 222 (14%) midtreatment. Median survival was 43 days from RT start (95% CI, 41-45) and varied by site (P<.001), ranging from 36 (head and neck) to 53 days (dermal/soft tissue). On multivariable analysis, earlier time-to-death was associated with osseous (hazard ratio [HR], 1.33; P<.001) and head and neck (HR, 1.45; P<.001) sites, multiple RT courses ≤6 months (HR, 1.65; P<.001), and multisite treatments (HR, 1.40; P=.008), whereas stereotactic technique (HR, 0.77; P<.001) and more recent treatment year (HR, 0.82; P<.001) were associated with longer survival. No difference in time to death was noted among patients prescribed conventional RT in 1 to 10 versus >10 fractions (median, 40 vs 47 days; P=.272), although the latter entailed longer courses. The 30-day mortality group included 335 (58%) inpatients, who were 27% more likely to die midtreatment (P=.031). On multivariable analysis, midtreatment mortality among these inpatients was associated with thoracic (odds ratio [OR], 2.95; P=.002) and central nervous system (CNS; OR, 2.44; P=.002) indications, >5-fraction courses (OR, 3.27; P<.001), and performance status of 3 to 4 (OR, 1.63; P=.050). Conversely, palliative/supportive care consultation was associated with decreased midtreatment mortality (OR, 0.60; P=.045). CONCLUSIONS: Earlier referrals and hypofractionated courses (≤5-10 treatments) should be routinely considered for palliative RT indications, given the short life expectancies of patients at this stage in their disease course. Providers should exercise caution for emergent thoracic and CNS indications among inpatients with poor prognoses due to high midtreatment mortality.


Assuntos
Cuidados Paliativos na Terminalidade da Vida , Assistência Terminal , Humanos , Cuidados Paliativos/métodos , Seleção de Pacientes
20.
Adv Radiat Oncol ; 6(4): 100683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33824935

RESUMO

PURPOSE: To provide a series of suggestions for other Medical Physics practices to follow in order to provide effective radiation therapy treatments during the COVID-19 pandemic. METHODS AND MATERIALS: We reviewed our entire Radiation Oncology infrastructure to identify a series of workflows and policy changes that we implemented during the pandemic that yielded more effective practices during this time. RESULTS: We identified a structured list of several suggestions that can help other Medical Physics practices overcome the challenges involved in delivering high quality radiotherapy services during this pandemic. CONCLUSIONS: Our facility encompasses 4 smaller Houston Area Locations (HALs), a main campus with 8 distinct services based on treatment site (ie. Thoracic, Head and Neck, Breast, Gastrointestinal, Gynecology, Genitourinary, Hematologic Malignancies, Melanoma and Sarcoma and Central Nervous System/Pediatrics), a Proton Center facility, an MR-Linac, a Gamma Knife clinic and an array of brachytherapy services. Due to the scope of our services, we have gained experience in dealing with the rapidly changing pandemic effects on our clinical practice. Our paper provides a resource to other Medical Physics practices in search of workflows that have been resilient during these challenging times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...