Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12079, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495730

RESUMO

Collections of genetic sequences belonging to related organisms contain information on the evolutionary constraints to which the organisms have been subjected. Heavily constrained regions can be investigated to understand their roles in an organism's life cycle, and drugs can be sought to disrupt these roles. In organisms with low genetic diversity, such as newly-emerged pathogens, it is key to obtain this information early to develop new treatments. Here, we present methods that ensure we can leverage all the information available in a low-signal, low-noise set of sequences, to find contiguous regions of relatively conserved nucleic acid. We demonstrate the application of these methods by analysing over 5 million genome sequences of the recently-emerged RNA virus SARS-CoV-2 and correlating these results with an analysis of 119 genome sequences of SARS-CoV. We propose the precise location of a previously described packaging signal, and discuss explanations for other regions of high conservation.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , SARS-CoV-2/genética , COVID-19/genética , Motivos de Nucleotídeos , Alinhamento de Sequência , Genoma Viral , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
2.
Annu Rev Virol ; 10(1): 217-242, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37339768

RESUMO

Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Vírus de RNA , Microscopia Crioeletrônica , Ribossomos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo
3.
Elife ; 112022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226596

RESUMO

The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1ß. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.


Viruses have tiny genomes. Rather than carry all the genetic information they need, they rely on the cells they infect. This makes the few genes they do have all the more important. Many viruses store their genes not in DNA, but in a related molecule called RNA. When the virus infects cells, it uses the cells' ribosomes ­ the machines in the cells that make proteins ­ to build its own proteins. One of the central ideas in biology is that one molecule of RNA carries the instructions for just one type of protein. But many viruses break this rule. The ribosomes in cells read RNA instructions in blocks of three: three RNA letters correspond to one protein building block. But certain sequences in the RNA of viruses act as hidden signals that affect how ribosomes read these molecules. These signals make the ribosomes skip backward by one or two letters on the viral RNA, restarting part way through a three-letter block. Scientists call this a 'frameshift', and it is a bit like changing the positions of the spaces in a sentence. The virus causes these frameshifts using proteins or by folding its RNA into a knot-like structure. The frameshifts result in the production of different viral proteins over time. The porcine reproductive and respiratory syndrome virus (PRRSV) uses frameshifts to cause devastating disease in pigs. Besides the sequences in its RNA that allow the ribosomes to skip backwards, the viral enzyme that copies the RNA can also skip forward. This results in shortened copies of its genes, which also changes the proteins they produce. To find out exactly how PRRSV uses these frameshifting techniques, Cook et al. examined infected cells in the laboratory. They monitored the RNA made by the virus and looked closely at the way the cells read it using a technique called ribosome profiling. This revealed that frameshifting increases over the course of an infection. This is partly because the viral protein that causes frameshifts builds up as infection progresses, but it also happened with frameshifts caused by RNA knots. The reason for this is less clear. Cook et al. also discovered several new RNAs made later in infection, which could also change the proteins the virus makes. RNA viruses cause disease in humans as well as pigs. Examples include coronaviruses and HIV. Many of these also have frameshift sites in their genomes. A better understanding of how frameshifts change during infection may aid drug development. Future work could help researchers to understand which proteins viruses make at which stage of infection. This could lead to new treatments for viruses like PRRSV.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Códon/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/genética , Perfilação da Expressão Gênica , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Ribossomos/genética , Ribossomos/metabolismo , Suínos , Transcriptoma
4.
Nat Commun ; 12(1): 7166, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887415

RESUMO

Programmed -1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection.


Assuntos
Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/metabolismo , Regulação Viral da Expressão Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/metabolismo , Cristalografia por Raios X , Vírus da Encefalomiocardite/química , Vírus da Encefalomiocardite/genética , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Virais/genética
5.
Nucleic Acids Res ; 49(20): 11938-11958, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34751406

RESUMO

The 2A protein of Theiler's murine encephalomyelitis virus (TMEV) acts as a switch to stimulate programmed -1 ribosomal frameshifting (PRF) during infection. Here, we present the X-ray crystal structure of TMEV 2A and define how it recognises the stimulatory RNA element. We demonstrate a critical role for bases upstream of the originally predicted stem-loop, providing evidence for a pseudoknot-like conformation and suggesting that the recognition of this pseudoknot by beta-shell proteins is a conserved feature in cardioviruses. Through examination of PRF in TMEV-infected cells by ribosome profiling, we identify a series of ribosomal pauses around the site of PRF induced by the 2A-pseudoknot complex. Careful normalisation of ribosomal profiling data with a 2A knockout virus facilitated the identification, through disome analysis, of ribosome stacking at the TMEV frameshifting signal. These experiments provide unparalleled detail of the molecular mechanisms underpinning Theilovirus protein-stimulated frameshifting.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Proteínas Virais/metabolismo , Ribossomos/metabolismo , Theilovirus/genética , Theilovirus/metabolismo , Proteínas Virais/química
6.
Viruses ; 13(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202160

RESUMO

The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.


Assuntos
Códon de Terminação/genética , Coronavirus/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Escherichia coli/genética , Regulação Viral da Expressão Gênica , Humanos , Vírus da Leucemia Murina/genética , Proteínas com Motivo de Reconhecimento de RNA , RNA Viral/genética , Replicação Viral
7.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138976

RESUMO

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Vírus da Hepatite Murina/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , RNA-Seq , Células Vero , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
8.
Methods Mol Biol ; 2192: 183-196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230774

RESUMO

Ribosome profiling (Ribo-Seq) is a technique that allows genome-wide, quantitative analysis of translation. In recent years, it has found multiple applications in studies of translation in diverse organisms, tracking protein synthesis with single codon resolution. Traditional protocols applied for generating Ribo-Seq libraries from mammalian cell cultures are not suitable to study mitochondrial translation due to differences between eukaryotic cytosolic and mitochondrial ribosomes. Here, we present an adapted protocol enriching for mitoribosome footprints. In addition, we describe the preparation of small RNA sequencing libraries from the resultant mitochondrial ribosomal protected fragments (mtRPFs).


Assuntos
Perfilação da Expressão Gênica/métodos , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas/genética , Transcriptoma , Sequência de Bases , Técnicas de Cultura de Células , Códon/metabolismo , Células HEK293 , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
9.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
10.
Nat Plants ; 6(5): 522-532, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284544

RESUMO

Temperature is a major environmental cue affecting plant growth and development. Plants often experience higher temperatures in the context of a 24 h day-night cycle, with temperatures peaking in the middle of the day. Here, we find that the transcript encoding the bHLH transcription factor PIF7 undergoes a direct increase in translation in response to warmer temperature. Diurnal expression of PIF7 transcript gates this response, allowing PIF7 protein to quickly accumulate in response to warm daytime temperature. Enhanced PIF7 protein levels directly activate the thermomorphogenesis pathway by inducing the transcription of key genes such as the auxin biosynthetic gene YUCCA8, and are necessary for thermomorphogenesis to occur under warm cycling daytime temperatures. The temperature-dependent translational enhancement of PIF7 messenger RNA is mediated by the formation of an RNA hairpin within its 5' untranslated region, which adopts an alternative conformation at higher temperature, leading to increased protein synthesis. We identified similar hairpin sequences that control translation in additional transcripts including WRKY22 and the key heat shock regulator HSFA2, suggesting that this is a conserved mechanism enabling plants to respond and adapt rapidly to high temperatures.


Assuntos
Arabidopsis/crescimento & desenvolvimento , RNA de Plantas/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Temperatura , Fatores de Transcrição/fisiologia
11.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243124

RESUMO

Like all coronaviruses, avian infectious bronchitis virus (IBV) possesses a long, single-stranded, positive-sense RNA genome (∼27 kb) and has a complex replication strategy that includes the production of a nested set of subgenomic mRNAs (sgmRNAs). Here, we used whole-transcriptome sequencing (RNASeq) and ribosome profiling (RiboSeq) to delineate gene expression in the IBV M41-CK and Beau-R strains at subcodon resolution. RNASeq facilitated a comparative analysis of viral RNA synthesis and revealed two novel transcription junction sites in the attenuated Beau-R strain, one of which would generate a sgmRNA encoding a ribosomally occupied open reading frame (dORF) located downstream of the nucleocapsid coding region. RiboSeq permitted quantification of the translational efficiency of virus gene expression and identified, for the first time, sites of ribosomal pausing on the genome. Quantification of reads flanking the programmed ribosomal frameshifting (PRF) signal at the genomic RNA ORF1a/ORF1b junction revealed that PRF in IBV is highly efficient (33 to 40%). Triplet phasing of RiboSeq data allowed precise determination of reading frames and revealed the translation of two ORFs (ORF4b and ORF4c on sgmRNA IR), which are widely conserved across IBV isolates. Analysis of differential gene expression in infected primary chick kidney cells indicated that the host cell response to IBV occurs primarily at the level of transcription, with global upregulation of immune-related mRNA transcripts following infection and comparatively modest changes in the translation efficiencies of host genes. Cellular genes and gene networks differentially expressed during virus infection were also identified, giving insights into the host cell response to IBV infection.IMPORTANCE IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection.


Assuntos
Vírus da Bronquite Infecciosa/genética , Virulência/genética , Animais , Galinhas/genética , Códon/genética , Infecções por Coronavirus/virologia , Mudança da Fase de Leitura do Gene Ribossômico , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , Vírus da Bronquite Infecciosa/metabolismo , Fases de Leitura Aberta , Doenças das Aves Domésticas/virologia , RNA Mensageiro/genética , RNA Viral/genética , Ribossomos/metabolismo , Transcriptoma/genética , Sequenciamento do Exoma/métodos
12.
Nucleic Acids Res ; 47(15): 8207-8223, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31180502

RESUMO

Many viruses utilize programmed -1 ribosomal frameshifting (-1 PRF) to express additional proteins or to produce frameshift and non-frameshift protein products at a fixed stoichiometric ratio. PRF is also utilized in the expression of a small number of cellular genes. Frameshifting is typically stimulated by signals contained within the mRNA: a 'slippery' sequence and a 3'-adjacent RNA structure. Recently, we showed that -1 PRF in encephalomyocarditis virus (EMCV) is trans-activated by the viral 2A protein, leading to a temporal change in PRF efficiency from 0% to 70% during virus infection. Here we analyzed PRF in the related Theiler's murine encephalomyelitis virus (TMEV). We show that 2A is also required for PRF in TMEV and can stimulate PRF to levels as high as 58% in rabbit reticulocyte cell-free translations and 81% during virus infection. We also show that TMEV 2A trans-activates PRF on the EMCV signal but not vice versa. We present an extensive mutational analysis of the frameshift stimulators (mRNA signals and 2A protein) analysing activity in in vitro translation, electrophoretic mobility shift and in vitro ribosome pausing assays. We also investigate the PRF mRNA signal with RNA structure probing. Our results substantially extend previous characterization of protein-stimulated PRF.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Viral/genética , Ribossomos/genética , Theilovirus/genética , Animais , Sequência de Bases , Camundongos , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribossomos/metabolismo , Theilovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167906

RESUMO

The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein, nsp1ß, and cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1ß of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1ß are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1ß, slippery sequence, and C-rich motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1ßs of all non-EAV arteriviruses tested. Taken together, these data suggest that -2/-1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication.IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology.


Assuntos
Evolução Biológica , Mudança da Fase de Leitura do Gene Ribossômico , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Arterivirus/genética , Linhagem Celular , Expressão Gênica , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
14.
Retrovirology ; 15(1): 10, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357872

RESUMO

BACKGROUND: The retrovirus murine leukemia virus (MuLV) has an 8.3 kb RNA genome with a simple 5'-gag-pol-env-3' architecture. Translation of the pol gene is dependent upon readthrough of the gag UAG stop codon; whereas the env gene is translated from spliced mRNA transcripts. Here, we report the first high resolution analysis of retrovirus gene expression through tandem ribosome profiling (RiboSeq) and RNA sequencing (RNASeq) of MuLV-infected cells. RESULTS: Ribosome profiling of MuLV-infected cells was performed, using the translational inhibitors harringtonine and cycloheximide to distinguish initiating and elongating ribosomes, respectively. Meta-analyses of host cell gene expression demonstrated that the RiboSeq datasets specifically captured the footprints of translating ribosomes at high resolution. Direct measurement of ribosomal occupancy of the MuLV genomic RNA indicated that ~ 7% of ribosomes undergo gag stop codon readthrough to access the pol gene. Initiation of translation was found to occur at several additional sites within the 5' leaders of the gag and env transcripts, upstream of their respective annotated start codons. CONCLUSIONS: These experiments reveal the existence of a number of previously uncharacterised, ribosomally occupied open reading frames within the MuLV genome, with possible regulatory consequences. In addition, we provide the first direct measurements of stop codon readthrough efficiency during cellular infection.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica , Vírus da Leucemia Murina/genética , Ribossomos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Análise de Sequência de RNA , Fatores de Tempo , Transcrição Gênica
15.
Elife ; 62017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28745585

RESUMO

Human mitochondria contain a genome (mtDNA) that encodes essential subunits of the oxidative phosphorylation system. Expression of mtDNA entails multi-step maturation of precursor RNA. In other systems, the RNA life cycle involves surveillance mechanisms, however, the details of RNA quality control have not been extensively characterised in human mitochondria. Using a mitochondrial ribosome profiling and mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) assay, we identify the poly(A)-specific exoribonuclease PDE12 as a major factor for the quality control of mitochondrial non-coding RNAs. The lack of PDE12 results in a spurious polyadenylation of the 3' ends of the mitochondrial (mt-) rRNA and mt-tRNA. While the aberrant adenylation of 16S mt-rRNA did not affect the integrity of the mitoribosome, spurious poly(A) additions to mt-tRNA led to reduced levels of aminoacylated pool of certain mt-tRNAs and mitoribosome stalling at the corresponding codons. Therefore, our data uncover a new, deadenylation-dependent mtRNA maturation pathway in human mitochondria.


Assuntos
Mitocôndrias/genética , Poli A/genética , Poliadenilação , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA de Transferência/genética , RNA/genética , Exorribonucleases/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Fosforilação Oxidativa , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo
16.
Nat Commun ; 8: 15582, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593994

RESUMO

Programmed -1 ribosomal frameshifting is a mechanism of gene expression, whereby specific signals within messenger RNAs direct a proportion of translating ribosomes to shift -1 nt and continue translating in the new reading frame. Such frameshifting normally occurs at a set ratio and is utilized in the expression of many viral genes and a number of cellular genes. An open question is whether proteins might function as trans-acting switches to turn frameshifting on or off in response to cellular conditions. Here we show that frameshifting in a model RNA virus, encephalomyocarditis virus, is trans-activated by viral protein 2A. As a result, the frameshifting efficiency increases from 0 to 70% (one of the highest known in a mammalian system) over the course of infection, temporally regulating the expression levels of the viral structural and enzymatic proteins.


Assuntos
Vírus da Encefalomiocardite/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/genética , Regulação Viral da Expressão Gênica/genética , Sequências Repetidas Invertidas/genética , Biossíntese de Proteínas/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Vírus da Encefalomiocardite/genética , Mesocricetus , Conformação de Ácido Nucleico , Fases de Leitura Aberta , RNA Mensageiro/genética , RNA Viral/biossíntese , RNA Viral/genética , Ribossomos/metabolismo
17.
Nucleic Acids Res ; 44(12): 5491-503, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27257056

RESUMO

Translational control through programmed ribosomal frameshifting (PRF) is exploited widely by viruses and increasingly documented in cellular genes. Frameshifting is induced by mRNA secondary structures that compromise ribosome fidelity during decoding of a heptanucleotide 'slippery' sequence. The nsp2 PRF signal of porcine reproductive and respiratory syndrome virus is distinctive in directing both -2 and -1 PRF and in its requirement for a trans-acting protein factor, the viral replicase subunit nsp1ß. Here we show that the the trans-activation of frameshifting is carried out by a protein complex composed of nsp1ß and a cellular poly(C) binding protein (PCBP). From the results of in vitro translation and electrophoretic mobility shift assays, we demonstrate that a PCBP/nsp1ß complex binds to a C-rich sequence downstream of the slippery sequence and here mimics the activity of a structured mRNA stimulator of PRF. This is the first description of a role for a trans-acting cellular protein in PRF. The discovery broadens the repertoire of activities associated with poly(C) binding proteins and prototypes a new class of virus-host interactions.


Assuntos
Cisteína Endopeptidases/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , RNA Mensageiro/genética , Ribossomos/genética , Animais , Sequência de Bases , Cisteína Endopeptidases/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Conformação de Ácido Nucleico , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Biossíntese de Proteínas/genética , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Suínos/genética , Suínos/virologia
18.
PLoS Pathog ; 12(2): e1005473, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26919232

RESUMO

Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite Murina/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Mudança da Fase de Leitura do Gene Ribossômico , Perfilação da Expressão Gênica , Cinética , Mesocricetus , Camundongos , Vírus da Hepatite Murina/enzimologia , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Viral/química , Mapeamento por Restrição/métodos , Análise de Sequência de RNA , Transcrição Gênica , Transcriptoma , Proteínas Virais/química , Proteínas Virais/genética , Fenômenos Fisiológicos Virais
19.
PLoS Pathog ; 11(9): e1005151, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26334635

RESUMO

Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Patógeno , Imunidade Inata , Iniciação Traducional da Cadeia Peptídica , Vaccinia virus/fisiologia , Vacínia/virologia , Proteínas Virais/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Vacínia/imunologia , Vacínia/metabolismo , Vacínia/patologia , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Proteínas Virais/genética , Virulência
20.
RNA ; 21(10): 1731-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286745

RESUMO

Ribosome profiling is a technique that permits genome-wide, quantitative analysis of translation and has found broad application in recent years. Here we describe a modified profiling protocol and software package designed to benefit more broadly the translation community in terms of simplicity and utility. The protocol, applicable to diverse organisms, including organelles, is based largely on previously published profiling methodologies, but uses duplex-specific nuclease (DSN) as a convenient, species-independent way to reduce rRNA contamination. We show that DSN-based depletion compares favorably with other commonly used rRNA depletion strategies and introduces little bias. The profiling protocol typically produces high levels of triplet periodicity, facilitating the detection of coding sequences, including upstream, downstream, and overlapping open reading frames (ORFs) and an alternative ribosome conformation evident during termination of protein synthesis. In addition, we provide a software package that presents a set of methods for parsing ribosomal profiling data from multiple samples, aligning reads to coding sequences, inferring alternative ORFs, and plotting average and transcript-specific aspects of the data. Methods are also provided for extracting the data in a form suitable for differential analysis of translation and translational efficiency.


Assuntos
Endonucleases/metabolismo , Ribossomos/metabolismo , Software , Chlamydomonas reinhardtii/genética , Biologia Computacional , Fases de Leitura Aberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...