Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513109

RESUMO

Once released into the environment, engineered nanomaterials (ENMs) undergo complex interactions and transformations that determine their fate, exposure concentration, form, and likely impact on biota. Transformations are physical, chemical, or biological changes that occur to the ENM or the ENM coating. Over time, these transformations have an impact on their behaviour and properties. The interactions and transformations of ENMs in the environment depend on their pristine physical and chemical characteristics and the environmental or biological compartment into which they are released. The uniqueness of each ENM property or lifecycle results in a great deal of complexity. Even small changes may have a significant impact on their potential transformations. This review outlines the key influences and outcomes of ENM evolution pathways in aquatic environments and provides an assessment of potential environmental transformations, focusing on key chemical, physical, and biological processes. By obtaining a comprehensive understanding of the potential environmental transformations that nanomaterials can undergo, more realistic models of their probable environmental behaviour and potential impact can be developed. This will, in turn, be crucial in supporting regulatory bodies in their efforts to develop environmental policy in the field of nanotechnology.

3.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164246

RESUMO

Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by automation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been developed, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air-liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data.

4.
J Vis Exp ; (176)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34747394

RESUMO

The physicochemical characterization of nanomaterials (NMs) is often an analytical challenge, due to their small size (at least one dimension in the nanoscale, i.e. 1-100 nm), dynamic nature, and diverse properties. At the same time, reliable and repeatable characterization is paramount to ensure safety and quality in the manufacturing of NM-bearing products. There are several methods available to monitor and achieve reliable measurement of nanoscale-related properties, one example of which is Ultraviolet-Visible Spectroscopy (UV-Vis). This is a well-established, simple, and inexpensive technique that provides non-invasive and fast real-time screening evaluation of NM size, concentration, and aggregation state. Such features make UV-Vis an ideal methodology to assess the proficiency testing schemes (PTS) of a validated standard operating procedure (SOP) intended to evaluate the performance and reproducibility of a characterization method. In this paper, the PTS of six partner laboratories from the H2020 project ACEnano were assessed through an interlaboratory comparison (ILC). Standard gold (Au) colloid suspensions of different sizes (ranging 5-100 nm) were characterized by UV-Vis at the different institutions to develop an implementable and robust protocol for NM size characterization.


Assuntos
Ouro , Nanoestruturas , Ouro/química , Nanoestruturas/química , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta/métodos , Água/química
5.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684976

RESUMO

Plastics are considered one of the most serious environmental global concerns as they are ubiquitous and contribute to the build-up of pollution. In August 2020, the BBC reported that scientists found 12-21 million tonnes of tiny plastic fragments floating in the Atlantic Ocean. After release into the environment, plastics from consumer items, such as cosmetics and biomedical products, are subject to degradation and break down into microplastics (<5 mm in diameter) and eventually into nanoplastics (<100 nm in at least one dimension). Given their global abundance and environmental persistence, exposure of humans and animals to these micro- and nano- plastics is unavoidable. "We urgently need to know more about the health impact of microplastics because they are everywhere", says Dr Maria Neira, Director at the World Health Organization. Nanoplastics are also an emerging environmental concern as little is known about their generation, degradation, transformation, ageing, and transportation. Owing to their small size, nanoplastics can be trapped by filter-feeding organisms and can enter the food chain at an early stage. Therefore, there is a gap in the knowledge that vitally needs to be addressed. This minireview considers how nanoplastic research can be made more quantifiable through traceable and trackable plastic particles and more environmentally realistic by considering the changes over time. It considers how nanoplastic research can use industrially realistic samples and be more impactful by incorporating the ecological impact.

6.
Molecules ; 26(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500752

RESUMO

ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations.

7.
J Vis Exp ; (164)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33165326

RESUMO

In the field of nanotechnology, analytical characterization plays a vital role in understanding the behavior and toxicity of nanomaterials (NMs). Characterization needs to be thorough and the technique chosen should be well-suited to the property to be determined, the material being analyzed and the medium in which it is present. Furthermore, the instrument operation and methodology need to be well-developed and clearly understood by the user to avoid data collection errors. Any discrepancies in the applied method or procedure can lead to differences and poor reproducibility of obtained data. This paper aims to clarify the method to measure the hydrodynamic diameter of gold nanoparticles by means of Nanoparticle Tracking Analysis (NTA). This study was carried out as an inter-laboratory comparison (ILC) amongst seven different laboratories to validate the standard operating procedure's performance and reproducibility. The results obtained from this ILC study reveal the importance and benefits of detailed standard operating procedures (SOPs), best practice updates, user knowledge, and measurement automation.


Assuntos
Ouro/química , Laboratórios , Nanopartículas Metálicas/química , Água/química , Hidrodinâmica , Tamanho da Partícula , Reprodutibilidade dos Testes
8.
Biomacromolecules ; 21(5): 1802-1811, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31967794

RESUMO

Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-ß-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris.


Assuntos
Curcumina , Ciclodextrinas , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bandagens , Celulose , Hidrogéis , Prata
9.
Environ Pollut ; 252(Pt B): 974-981, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31252136

RESUMO

During their lifecycle, many engineered nanoparticles (ENPs) undergo significant transformations that may modify their toxicity, behaviour, and fate in the environment. Therefore, understanding the possible environmentally relevant transformations that ENPs may undergo as a result of their surroundings is becoming increasingly important. This work considers industrially produced ceria (CeO2) and focuses on a particle library consisting of seven zirconium-doped variants (Ce1-xZrxO2) where the Zr doping range is x = 0-1. The study assesses their potential transformation in the presence of environmentally relevant concentrations of phosphate. These ENPs have an important role in the operation of automotive catalysts and therefore may end up in the environment where transformations can take place. Samples were exposed to pH adjusted (c. 5.5) solutions made up of either 1 mM or 5 mM each of KH2PO4, citric acid and ascorbic acid and the transformed particles were characterised by means of DLS - size and zeta potential, UV/VIS, TEM, FT-IR, EDX and XRD. Exposure to the phosphate solutions resulted in chemical and physical changes in all ceria-containing samples to cerium phosphate (with the monazite structure). The transformations were dependent on time, ceria concentration in the particles (Ce:Zr ratio) and phosphate to ceria ratio. The presence of Zr within the doped samples did not inhibit these transformations, yet the pure end member ZrO2 ENPs showed no conversion to phosphate. The quite dramatic changes in size, structure and composition observed raise important questions regarding the relevant form of the materials to investigate in ecotoxicity tests, and for regulations based on one or more dimensions in the nanoscale.


Assuntos
Cério/química , Poluentes Ambientais/química , Nanopartículas/química , Fosfatos/química , Zircônio/química , Catálise , Metais Terras Raras/química , Tamanho da Partícula , Propriedades de Superfície
10.
PLoS One ; 14(6): e0217483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31173616

RESUMO

The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials' own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media. We have experimented with the transformation of four different kinds of CeO2 NPs, in order to investigate the effects of nanoparticle size, capping agent (three were uncapped and one was PVP capped) and oxidation state (two consisted mostly of Ce4+ and two were a mix of Ce3+/Ce4+). They were exposed to a reaction solution containing KH2PO4, citric acid and ascorbic acid at pH values of 2.3, 5.5 and 12.3, and concentrations of 1mM and 5mM. The transformations were followed by UV-vis, zeta potential and XRD measurements, which were taken after 7 and 21 days, and by transmission electron microscopy after 21 days. X-ray photoelectron spectroscopy was measured at 5mM concentration after 21 days for some samples. Results show that for pH 5 and 5mM phosphate concentration, CePO4 NPs were formed. Nanoparticles that were mostly Ce4+ did not dissolve at 1mM reagent concentration, and did not produce CePO4 NPs. When PVP was present as a capping agent it proved to be an extra reducing agent, and CePO4 was found under all conditions used. This is the first paper where the transformation of CeO2 NPs in the presence of phosphate has been studied for particles with different size, shapes and capping agents, in a range of different conditions and using many different characterisation methods.


Assuntos
Cério/química , Nanopartículas/química , Fosfatos/química , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula
11.
Sci Data ; 6(1): 46, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048742

RESUMO

The large amount of existing nanomaterials demands rapid and reliable methods for testing their potential toxicological effect on human health, preferably by means of relevant in vitro techniques in order to reduce testing on animals. Combining high throughput workflows with automated high content imaging techniques allows deriving much more information from cell-based assays than the typical readouts (i.e. one measurement per well) with optical plate-readers. We present here a dataset including data based on a maximum of 14 different read outs (including viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential and steatosis) of the human hepatoma HepaRG cell line treated with a large set of nanomaterials, coatings and supernatants at different concentrations. The database, given its size, can be utilized in the development of in silico hazard assessment and prediction tools or can be combined with toxicity results from other in vitro test systems.


Assuntos
Bases de Dados Factuais , Nanoestruturas/toxicidade , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Contagem de Células , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
12.
Nanomaterials (Basel) ; 8(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439415

RESUMO

Due to the increasing use and production of nanomaterials (NMs), the ability to characterise their physical/chemical properties quickly and reliably has never been so important. Proper characterisation allows a thorough understanding of the material and its stability, and is critical to establishing dose-response curves to ascertain risks to human and environmental health. Traditionally, methods such as Transmission Electron Microscopy (TEM), Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) have been favoured for size characterisation, due to their wide-availability and well-established protocols. Capillary Electrophoresis (CE) offers a faster and more cost-effective solution for complex dispersions including polydisperse or non-spherical NMs. CE has been used to rapidly separate NMs of varying sizes, shapes, surface modifications and compositions. This review will discuss the literature surrounding the CE separation techniques, detection and NM characteristics used for the analysis of a wide range of NMs. The potential of combining CE with mass spectrometry (CE-MS) will also be explored to further expand the characterisation of NMs, including the layer of biomolecules adsorbed to the surface of NMs in biological or environmental compartments, termed the acquired biomolecule corona. CE offers the opportunity to uncover new/poorly characterised low abundance and polar protein classes due to the high ionisation efficiency of CE-MS. Furthermore, the possibility of using CE-MS to characterise the poorly researched small molecule interactions within the NM corona is discussed.

13.
Arch Toxicol ; 92(2): 633-649, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29119250

RESUMO

Manufactured nanomaterials (MNMs) selected from a library of over 120 different MNMs with varied compositions, sizes, and surface coatings were tested by four different laboratories for toxicity by high-throughput/-content (HT/C) techniques. The selected particles comprise 14 MNMs composed of CeO2, Ag, TiO2, ZnO and SiO2 with different coatings and surface characteristics at varying concentrations. The MNMs were tested in different mammalian cell lines at concentrations between 0.5 and 250 µg/mL to link physical-chemical properties to multiple adverse effects. The cell lines are derived from relevant organs such as liver, lung, colon and the immune system. Endpoints such as viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential, lysosomal acidification and steatosis have been studied. Soluble MNMs, Ag and ZnO, were toxic in all cell types. TiO2 and SiO2 MNMs also triggered toxicity in some, but not all, cell types and the cell type-specific effects were influenced by the specific coating and surface modification. CeO2 MNMs were nearly ineffective in our test systems. Differentiated liver cells appear to be most sensitive to MNMs, Whereas most of the investigated MNMs showed no acute toxicity, it became clear that some show adverse effects dependent on the assay and cell line. Hence, it is advised that future nanosafety studies utilise a multi-parametric approach such as HT/C screening to avoid missing signs of toxicity. Furthermore, some of the cell type-specific effects should be followed up in more detail and might also provide an incentive to address potential adverse effects in vivo in the relevant organ.


Assuntos
Ensaios de Triagem em Larga Escala , Microscopia , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Células A549 , Animais , Relação Dose-Resposta a Droga , Células HCT116 , Células Hep G2 , Humanos , Nanopartículas Metálicas/toxicidade , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...