Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Am Nat ; 203(5): 535-550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635360

RESUMO

AbstractRecoveries of populations that have suffered severe disease-induced declines are being observed across disparate taxa. Yet we lack theoretical understanding of the drivers and dynamics of recovery in host populations and communities impacted by infectious disease. Motivated by disease-induced declines and nascent recoveries in amphibians, we developed a model to ask the following question: How does the rapid evolution of different host defense strategies affect the transient recovery trajectories of hosts following pathogen invasion and disease-induced declines? We found that while host life history is predictably a major driver of variability in population recovery trajectories (including declines and recoveries), populations that use different host defense strategies (i.e., tolerance, avoidance resistance, and intensity-reduction resistance) experience notably different recoveries. In single-species host populations, populations evolving tolerance recovered on average four times slower than populations evolving resistance. Moreover, while populations using avoidance resistance strategies had the fastest potential recovery rates, these populations could get trapped in long transient states at low abundance prior to recovery. In contrast, the recovery of populations evolving intensity-reduction resistance strategies were more consistent across ecological contexts. Overall, host defense strategies strongly affect the transient dynamics of population recovery and may affect the ultimate fate of real populations recovering from disease-induced declines.


Assuntos
Quitridiomicetos , Micoses , Animais , Anfíbios
2.
Ecology ; 104(2): e3885, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36217286

RESUMO

Losses in biodiversity can alter disease risk through changes in host species composition. Host species vary in pathogen susceptibility and competence, yet how changes in diversity alter host-pathogen dynamics remains unclear in many systems, particularly with respect to generalist pathogens. Amphibians are experiencing worldwide population declines linked to generalist pathogens, such as ranavirus, and thus represent an ideal group to investigate how host species composition affects disease risk. We conducted experiments in which amphibian larvae of three native species (Pacific tree frogs, Pseudacris regilla; Cascades frogs, Rana cascadae; and Western toads, Anaxyrus boreas) were exposed to ranavirus individually (in the laboratory) or as assemblages (in outdoor mesocosms). In a laboratory experiment, we observed low survival and high viral loads in P. regilla compared to the other species, suggesting that this species was highly susceptible to the pathogen. In the mesocosm experiment, we observed 41% A. boreas mortality when alone and 98% mortality when maintained with P. regilla and R. cascadae. Our results suggest that the presence of highly susceptible species can alter disease dynamics across multiple species, potentially increasing infection risk and mortality in co-occurring species.


Assuntos
Ranavirus , Animais , Anfíbios , Anuros , Larva , Ranidae , Especificidade de Hospedeiro
3.
J Anim Ecol ; 91(12): 2451-2464, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285540

RESUMO

1. Host density is hypothesized to be a major driver of variability in the responses and outcomes of wildlife populations following pathogen invasion. While the effects of host density on pathogen transmission have been extensively studied, these studies are dominated by theoretical analyses and small-scale experiments. This focus leads to an incomplete picture regarding how host density drives observed variability in disease outcomes in the field. 2. Here, we leveraged a dataset of hundreds of replicate amphibian populations that varied by orders of magnitude in host density. We used these data to test the effects of host density on three outcomes following the arrival of the amphibian-killing fungal pathogen Batrachochytrium dendrobatidis (Bd): the probability that Bd successfully invaded a host population and led to a pathogen outbreak, the magnitude of the host population-level decline following an outbreak and within-host infection dynamics that drive population-level outcomes in amphibian-pathogen systems. 3. Based on previous small-scale transmission experiments, we expected that populations with higher densities would be more likely to experience Bd outbreaks and would suffer larger proportional declines following outbreaks. To test these predictions, we developed and fitted a Hidden Markov Model that accounted for imperfectly observed disease outbreak states in the amphibian populations we surveyed. 4. Contrary to our predictions, we found minimal effects of host density on the probability of successful Bd invasion, the magnitude of population decline following Bd invasion and the dynamics of within-host infection intensity. Environmental conditions, such as summer temperature, winter severity and the presence of pathogen reservoirs, were more predictive of variability in disease outcomes. 5. Our results highlight the limitations of extrapolating findings from small-scale transmission experiments to observed disease trajectories in the field and provide strong evidence that variability in host density does not necessarily drive variability in host population responses following pathogen arrival. In an applied context, we show that feedbacks between host density and disease will not necessarily affect the success of reintroduction efforts in amphibian-Bd systems of conservation concern.


Assuntos
Animais
4.
Ecology ; 103(9): e3759, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593515

RESUMO

Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g., years). Here, we sought to understand the causes and consequences of seasonal infection dynamics in leopard frogs (Rana sphenocephala and Rana pipiens) infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). We addressed three questions broadly applicable to seasonal host-parasite systems. First, to what degree are observed seasonal patterns in infection driven by temperature-dependent infection processes compared to seasonal host demographic processes? Second, how does seasonal variation in maintenance potential affect long-term pathogen persistence in multi-host communities? Third, does high deterministic maintenance potential relate to the long-term stochastic persistence of pathogens in host populations with seasonal infection dynamics? To answer these questions, we used field data collected over 3 years on >1400 amphibians across four geographic locations, laboratory and mesocosm experiments, and a novel mathematical model. We found that the mechanisms that drive seasonal prevalence were different from those driving seasonal infection intensity. Seasonal variation in Bd prevalence was driven primarily by changes in host contact rates associated with breeding migrations to and from aquatic habitat. In contrast, seasonal changes in infection intensity were driven by temperature-induced changes in Bd growth rate. Using our model, we found that the maintenance potential of leopard frogs varied significantly throughout the year and that seasonal troughs in infection prevalence made it unlikely that leopard frogs were responsible for long-term Bd persistence in these seasonal amphibian communities, highlighting the importance of alternative pathogen reservoirs for Bd persistence. Our results have broad implications for management in seasonal host-pathogen systems, showing that seasonal changes in host and pathogen vital rates, rather than the depletion of susceptible hosts, can lead to troughs in pathogen prevalence and stochastic pathogen extirpation.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Ecossistema , Micoses/epidemiologia , Micoses/veterinária , Melhoramento Vegetal , Ranidae
5.
Theor Popul Biol ; 144: 1-12, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35051523

RESUMO

The pioneering work of Kermack and McKendrick (1927, 1932, 1933) is now most known for introducing the SIR model, which divides a population into discrete compartments for susceptible, infected and removed individuals. The SIR model is the archetype of widely used compartmental models for epidemics. It is sometimes forgotten, that Kermack and McKendrick introduced the SIR model as a special case of a more general framework. This general framework distinguishes individuals not only by whether they are susceptible, infected or removed, but additionally tracks the time passed since they got infected. Such time-since-infection models can mechanistically link within-host dynamics to the population level. This allows the models to account for more details of the disease dynamics, such as delays of infectiousness and symptoms during the onset of an infection. Details like this can be vital for interpreting epidemiological data. The time-since-infection framework was originally formulated for a host population with a single pathogen. However, the interactions of multiple pathogens within hosts and within a population can be crucial for understanding the severity and spread of diseases. Current models for multiple pathogens mostly rely on compartmental models. While such models are relatively easy to set up, they do not have the same mechanistic underpinning as time-since-infection models. To approach this gap of connecting within-host dynamics of multiple pathogens to the population level, we here extend the time-since-infection framework of Kermack and McKendrick for two pathogens. We derive formulas for the basic reproduction numbers in the system. Those numbers determine whether a pathogen can invade a population, potentially depending on whether the other pathogen is present or not. We then demonstrate use of the framework by setting up a simple within-host model that we connect to the population model. The example illustrates the context-specific information required for this type of model, and shows how the system can be simulated numerically. We verify that the formulas for the basic reproduction numbers correctly specify the invasibility conditions.


Assuntos
Epidemias , Modelos Biológicos , Número Básico de Reprodução , Modelos Epidemiológicos , Humanos
6.
PeerJ ; 10: e12712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036095

RESUMO

The recently-emerged amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has had an unprecedented impact on global amphibian populations, and highlights the urgent need to develop effective mitigation strategies. We conducted in-situ antifungal treatment experiments in wild populations of the endangered mountain yellow-legged frog during or immediately after Bd-caused mass die-off events. The objective of treatments was to reduce Bd infection intensity ("load") and in doing so alter frog-Bd dynamics and increase the probability of frog population persistence despite ongoing Bd infection. Experiments included treatment of early life stages (tadpoles and subadults) with the antifungal drug itraconazole, treatment of adults with itraconazole, and augmentation of the skin microbiome of subadults with Janthinobacterium lividum, a commensal bacterium with antifungal properties. All itraconazole treatments caused immediate reductions in Bd load, and produced longer-term effects that differed between life stages. In experiments focused on early life stages, Bd load was reduced in the 2 months immediately following treatment and was associated with increased survival of subadults. However, Bd load and frog survival returned to pre-treatment levels in less than 1 year, and treatment had no effect on population persistence. In adults, treatment reduced Bd load and increased frog survival over the entire 3-year post-treatment period, consistent with frogs having developed an effective adaptive immune response against Bd. Despite this protracted period of reduced impacts of Bd on adults, recruitment into the adult population was limited and the population eventually declined to near-extirpation. In the microbiome augmentation experiment, exposure of subadults to a solution of J. lividum increased concentrations of this potentially protective bacterium on frogs. However, concentrations declined to baseline levels within 1 month and did not have a protective effect against Bd infection. Collectively, these results indicate that our mitigation efforts were ineffective in causing long-term changes in frog-Bd dynamics and increasing population persistence, due largely to the inability of early life stages to mount an effective immune response against Bd. This results in repeated recruitment failure and a low probability of population persistence in the face of ongoing Bd infection.


Assuntos
Quitridiomicetos , Micoses , Animais , Antifúngicos/farmacologia , Itraconazol/farmacologia , Micoses/tratamento farmacológico , Anuros/microbiologia , Ranidae , Batrachochytrium , Bactérias
7.
Am Nat ; 198(6): 661-677, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762573

RESUMO

AbstractInfection intensity can dictate disease outcomes but is typically ignored when modeling infection dynamics of microparasites (e.g., bacteria, virus, and fungi). However, for a number of pathogens of wildlife typically categorized as microparasites, accounting for infection intensity and within-host infection processes is critical for predicting population-level responses to pathogen invasion. Here, we develop a modeling framework we refer to as reduced-dimension host-parasite integral projection models (reduced IPMs) that we use to explore how within-host infection processes affect the dynamics of pathogen invasion and virulence evolution. We find that individual-level heterogeneity in pathogen load-a nearly ubiquitous characteristic of host-parasite interactions that is rarely considered in models of microparasites-generally reduces pathogen invasion probability and dampens virulence-transmission trade-offs in host-parasite systems. The latter effect likely contributes to widely predicted virulence-transmission trade-offs being difficult to observe empirically. Moreover, our analyses show that intensity-dependent host mortality does not always induce a virulence-transmission trade-off, and systems with steeper than linear relationships between pathogen intensity and host mortality rate are significantly more likely to exhibit these trade-offs. Overall, reduced IPMs provide a useful framework to expand our theoretical and data-driven understanding of how within-host processes affect population-level disease dynamics.


Assuntos
Interações Hospedeiro-Patógeno , Parasitos , Animais , Interações Hospedeiro-Parasita , Dinâmica Populacional , Virulência
8.
Proc Biol Sci ; 288(1953): 20210782, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157877

RESUMO

Emerging infectious diseases are a pressing threat to global biological diversity. Increased incidence and severity of novel pathogens underscores the need for methodological advances to understand pathogen emergence and spread. Here, we use genetic epidemiology to test, and challenge, key hypotheses about a devastating zoonotic disease impacting amphibians globally. Using an amplicon-based sequencing method and non-invasive samples we retrospectively explore the history of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in two emblematic amphibian systems: the Sierra Nevada of California and Central Panama. The hypothesis in both regions is the hypervirulent Global Panzootic Lineage of Bd (BdGPL) was recently introduced and spread rapidly in a wave-like pattern. Our data challenge this hypothesis by demonstrating similar epizootic signatures can have radically different underlying evolutionary histories. In Central Panama, our genetic data confirm a recent and rapid pathogen spread. However, BdGPL in the Sierra Nevada has remarkable spatial structuring, high genetic diversity and a relatively older history inferred from time-dated phylogenies. Thus, this deadly pathogen lineage may have a longer history in some regions than assumed, providing insights into its origin and spread. Overall, our results highlight the importance of integrating observed wildlife die-offs with genetic data to more accurately reconstruct pathogen outbreaks.


Assuntos
Quitridiomicetos , Doenças Transmissíveis Emergentes , Anfíbios , Animais , Quitridiomicetos/genética , Panamá , Estudos Retrospectivos
9.
Ecol Lett ; 24(1): 130-148, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067922

RESUMO

Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Micoses/veterinária , Dinâmica Populacional
10.
J Anim Ecol ; 89(12): 2876-2887, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32935347

RESUMO

World-wide, infectious diseases represent a major source of mortality in humans and livestock. For wildlife populations, disease-induced mortality is likely even greater, but remains notoriously difficult to estimate-especially for endemic infections. Approaches for quantifying wildlife mortality due to endemic infections have historically been limited by an inability to directly observe wildlife mortality in nature. Here we address a question that can rarely be answered for endemic pathogens of wildlife: what are the population- and landscape-level effects of infection on host mortality? We combined laboratory experiments, extensive field data and novel mathematical models to indirectly estimate the magnitude of mortality induced by an endemic, virulent trematode parasite (Ribeiroia ondatrae) on hundreds of amphibian populations spanning four native species. We developed a flexible statistical model that uses patterns of aggregation in parasite abundance to infer host mortality. Our model improves on previous approaches for inferring host mortality from parasite abundance data by (i) relaxing restrictive assumptions on the timing of host mortality and sampling, (ii) placing all mortality inference within a Bayesian framework to better quantify uncertainty and (iii) accommodating data from laboratory experiments and field sampling to allow for estimates and comparisons of mortality within and among host populations. Applying our approach to 301 amphibian populations, we found that trematode infection was associated with an average of between 13% and 40% population-level mortality. For three of the four amphibian species, our models predicted that some populations experienced >90% mortality due to infection, leading to mortality of thousands of amphibian larvae within a pond. At the landscape scale, the total number of amphibians predicted to succumb to infection was driven by a few high mortality sites, with fewer than 20% of sites contributing to greater than 80% of amphibian mortality on the landscape. The mortality estimates in this study provide a rare glimpse into the magnitude of effects that endemic parasites can have on wildlife populations and our theoretical framework for indirectly inferring parasite-induced mortality can be applied to other host-parasite systems to help reveal the hidden death toll of pathogens on wildlife hosts.


Assuntos
Parasitos , Trematódeos , Animais , Animais Selvagens , Teorema de Bayes , Interações Hospedeiro-Parasita
11.
Mol Ecol ; 29(14): 2598-2611, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32573039

RESUMO

Moving animals on a landscape through translocations and reintroductions is an important management tool used in the recovery of endangered species, particularly for the maintenance of population genetic diversity and structure. Management of imperiled amphibian species rely heavily on translocations and reintroductions, especially for species that have been brought to the brink of extinction by habitat loss, introduced species, and disease. One striking example of amphibian declines and associated management efforts is in California's Sequoia and Kings Canyon National Parks with the mountain yellow-legged frog species complex (Rana sierrae/muscosa). Mountain yellow-legged frogs have been extirpated from more than 93% of their historic range, and limited knowledge of their population genetics has made long-term conservation planning difficult. To address this, we used 598 archived skin swabs from both extant and extirpated populations across 48 lake basins to generate a robust Illumina-based nuclear amplicon data set. We found that samples grouped into three main genetic clusters, concordant with watershed boundaries. We also found evidence for historical gene flow across watershed boundaries with a north-to-south axis of migration. Finally, our results indicate that genetic diversity is not significantly different between populations with different disease histories. Our study offers specific management recommendations for imperiled mountain yellow-legged frogs and, more broadly, provides a population genetic framework for leveraging minimally invasive samples for the conservation of threatened species.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Genética Populacional , Ranidae , Animais , California , Ecossistema , Extinção Biológica , Pele
12.
Ecol Lett ; 23(8): 1201-1211, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32357383

RESUMO

Pathogen persistence in host communities is influenced by processes operating at the individual host to landscape-level scale, but isolating the relative contributions of these processes is challenging. We developed theory to partition the influence of host species, habitat patches and landscape connectivity on pathogen persistence within metacommunities of hosts and pathogens. We used this framework to quantify the contributions of host species composition and habitat patch identity on the persistence of an amphibian pathogen across the landscape. By sampling over 11 000 hosts of six amphibian species, we found that a single host species could maintain the pathogen in 91% of observed metacommunities. Moreover, this dominant maintenance species contributed, on average, twice as much to landscape-level pathogen persistence compared to the most influential source patch in a metacommunity. Our analysis demonstrates substantial inequality in how species and patches contribute to pathogen persistence, with important implications for targeted disease management.


Assuntos
Quitridiomicetos , Infecções , Anfíbios , Animais , Ecossistema
13.
PLoS One ; 15(4): e0231811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302369

RESUMO

The disease chytridiomycosis, caused by the pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to global amphibian declines. Bd infects the keratinized epidermal tissue in amphibians and causes hyperkeratosis and excessive skin shedding. In individuals of susceptible species, the regulatory function of the amphibian's skin is disrupted resulting in an electrolyte depletion, osmotic imbalance, and eventually death. Safe and effective treatments for chytridiomycosis are urgently needed to control chytrid fungal infections and stabilize populations of endangered amphibian species in captivity and in the wild. Currently, the most widely used anti-Bd treatment is itraconazole. Preparations of itraconazole formulated for amphibian use has proved effective, but treatment involves short baths over seven to ten days, a process which is logistically challenging, stressful, and causes long-term health effects. Here, we explore a novel anti-fungal therapeutic using a single application of the ionic liquid, 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-NTf2), for the treatment of chytridiomycosis. BMP-NTf2 was found be effective at killing Bd in vitro at low concentrations (1:1000 dilution). We tested BMP-NTf2 in vivo on two amphibian species, one that is relatively tolerant of chytridiomycosis (Pseudacris regilla) and one that is highly susceptible (Dendrobates tinctorius). A toxicity trial revealed a surprising interaction between Bd infection status and the impact of BMP-NTf2 on D. tinctorius survival. Uninfected D. tinctorius tolerated BMP-NTf2 (mean ± SE; 96.01 ± 9.00 µl/g), such that only 1 out of 30 frogs died following treatment (at a dose of 156.95 µL/g), whereas, a lower dose (mean ± SE; 97.45 ± 3.52 µL/g) was not tolerated by Bd-infected D. tinctorius, where 15 of 23 frogs died shortly upon BMP-NTf2 application. Those that tolerated the BMP-NTf2 application did not exhibit Bd clearance. Thus, BMP-NTf2 application, under the conditions tested here, is not a suitable option for clearing Bd infection in D. tinctorius. However, different results were obtained for P. regilla. Two topical applications of BMP-NTf2 on Bd-infected P. regilla (using a lower BMP-NTf2 dose than on D. tinctorius, mean ± SE; 9.42 ± 1.43 µL/g) reduced Bd growth, although the effect was lower than that obtained by daily doses of itracanozole (50% frogs exhibited complete clearance on day 16 vs. 100% for itracanozole). Our findings suggest that BMP-NTf2 has the potential to treat Bd infection, however the effect depends on several parameters. Further optimization of dose and schedule are needed before BMP-NTf2 can be considered as a safe and effective alternative to more conventional antifungal agents, such as itraconazole.


Assuntos
Antifúngicos/farmacologia , Anuros/microbiologia , Quitridiomicetos/efeitos dos fármacos , Imidas/farmacologia , Líquidos Iônicos/farmacologia , Pirrolidinas/farmacologia , Animais , Antifúngicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Imidas/uso terapêutico , Líquidos Iônicos/uso terapêutico , Micoses/tratamento farmacológico , Micoses/microbiologia , Pirrolidinas/uso terapêutico , Pele/microbiologia , Esporos Fúngicos/efeitos dos fármacos
14.
Microb Ecol ; 79(1): 192-202, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31093727

RESUMO

Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.


Assuntos
Antifúngicos/farmacologia , Peptídeos/farmacologia , Probióticos/farmacologia , Ranidae/microbiologia , Pele/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Quitridiomicetos/efeitos dos fármacos , Quitridiomicetos/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ranidae/metabolismo , Pele/microbiologia
15.
Ecol Lett ; 23(1): 88-98, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31637835

RESUMO

Symbiotic microbial communities are important for host health, but the processes shaping these communities are poorly understood. Understanding how community assembly processes jointly affect microbial community composition is limited because inflexible community models rely on rejecting dispersal and drift before considering selection. We developed a flexible community assembly model based on neutral theory to ask: How do dispersal, drift and selection concurrently affect the microbiome across environmental gradients? We applied this approach to examine how a fungal pathogen affected the assembly processes structuring the amphibian skin microbiome. We found that the rejection of neutrality for the amphibian microbiome across a fungal gradient was not strictly due to selection processes, but was also a result of species-specific changes in dispersal and drift. Our modelling framework brings the qualitative recognition that niche and neutral processes jointly structure microbiomes into quantitative focus, allowing for improved predictions of microbial community turnover across environmental gradients.


Assuntos
Microbiota , Micoses , Anfíbios , Animais , Fungos , Pele
16.
Proc Natl Acad Sci U S A ; 116(41): 20382-20387, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548391

RESUMO

Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the history-and predict the future impacts-of this devastating pathogen.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos , Micoses/veterinária , Animais , Quitridiomicetos/genética , Saúde Global , Micoses/epidemiologia , Micoses/microbiologia
17.
PLoS One ; 14(9): e0219981, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536501

RESUMO

Amphibians, the most threatened group of vertebrates, are seen as indicators of the sixth mass extinction on earth. Thousands of species are threatened with extinction and many have been affected by an emerging infectious disease, chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd). However, amphibians exhibit different responses to the pathogen, such as survival and population persistence with infection, or mortality of individuals and complete population collapse after pathogen invasion. Multiple factors can affect host pathogen dynamics, yet few studies have provided a temporal view that encompasses both the epizootic phase (i.e. pathogen invasion and host collapse), and the transition to a more stable co-existence (i.e. recovery of infected host populations). In the Sierra Nevada mountains of California, USA, conspecific populations of frogs currently exhibit dramatically different host/ Bd-pathogen dynamics. To provide a temporal context by which present day dynamics may be better understood, we use a Bd qPCR assay to test 1165 amphibian specimens collected between 1900 and 2005. Our historical analyses reveal a pattern of pathogen invasion and eventual spread across the Sierra Nevada over the last century. Although we found a small number of Bd-infections prior to 1970, these showed no sign of spread or increase in infection prevalence over multiple decades. After the late 1970s, when mass die offs were first noted, our data show Bd as much more prevalent and more spatially spread out, suggesting epizootic spread. However, across the ~400km2 area, we found no evidence of a wave-like pattern, but instead discovered multiple, nearly-simultaneous invasions within regions. We found that Bd invaded and spread in the central Sierra Nevada (Yosemite National Park area) about four decades before it invaded and spread in the southern Sierra Nevada (Sequoia and Kings Canyon National Parks area), and suggest that the temporal pattern of pathogen invasion may help explain divergent contemporary host pathogen dynamics.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/microbiologia , Quitridiomicetos , Interações Hospedeiro-Patógeno , Micoses/veterinária , Anfíbios/microbiologia , Animais , California/epidemiologia , Quitridiomicetos/fisiologia , Museus , Nevada
18.
PLoS One ; 13(9): e0202273, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30226879

RESUMO

Coral reef systems can undergo rapid transitions from coral-dominated to macroalgae-dominated states following disturbances, and models indicate that these may sometimes represent shifts between alternative stable states. While several mechanisms may lead to alternate stable states on coral reefs, only a few have been investigated theoretically. We explore a model that illustrates that reduced vulnerability of macroalgae to herbivory as macroalgae grow and mature could be an important mechanism: when macroalgae are palatable to herbivores as juveniles, but resistant as adults, coral-dominated and algae-dominated states are bistable across a wide range of parameter space. We compare two approaches to global sensitivity analysis to rank the relative importance of the model parameters in determining the presence and magnitude of alternative stable states, and find that the two most influential parameters are the death rate of coral and the rate of maturation of algae out of the vulnerable stage. The Random Forest approach for global sensitivity analysis, recently adopted by ecologists, provides a more efficient method for ranking the relative importance of parameters than a variance-based approach that has been used frequently by computer scientists and engineers. Our results suggest that managing reefs to reduce chronic stressors that cause coral mortality and/or enhance the growth rates of algae can help prevent reefs from becoming locked in a macroalgae-dominated state.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Herbivoria/fisiologia , Modelos Biológicos , Alga Marinha/fisiologia , Animais
19.
Freshw Biol ; 63(7): 639-651, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30127540

RESUMO

A fundamental goal of disease ecology is to determine the landscape and environmental processes that drive disease dynamics at different biological levels to guide management and conservation. Although ranaviruses (family Iridoviridae) are emerging amphibian pathogens, few studies have conducted comprehensive field surveys to assess potential drivers of ranavirus disease dynamics.We examined the factors underlying patterns in site-level ranavirus presence and individual-level ranavirus infection in 76 ponds and 1,088 individuals representing 5 amphibian species within the East Bay region of California.Based on a competing-model approach followed by variance partitioning, landscape and biotic variables explained the most variation in site-level presence. However, biotic and individual-level variables explained the most variation in individual-level infection.Distance to nearest ranavirus-infected pond (the landscape factor) was more important than biotic factors at the site-level; however, biotic factors were most influential at the individual-level. At the site level, the probability of ranavirus presence correlated negatively with distance to nearest ranavirus-positive pond, suggesting that the movement of water or mobile taxa (e.g., adult amphibians, birds, reptiles) may facilitate the movement of ranavirus between ponds and across the landscape.Taxonomic richness associated positively with ranavirus presence at the site-level, but vertebrate richness associated negatively with infection prevalence in the host population. This might reflect the contrasting influences of diversity on pathogen colonization versus transmission among hosts.Amphibian host species differed in their likelihood of ranavirus infection: American bullfrogs (Rana catesbeiana) had the weakest association with infection while rough-skinned newts (Taricha granulosa) had the strongest. After accounting for host species effects, hosts with greater snout-vent length had a lower probability of infection.Our study demonstrates the array of landscape, environmental, and individual-level factors associated with ranavirus epidemiology. Moreover, our study helps illustrate that the importance of these factors varies with biological level.

20.
Methods Ecol Evol ; 9(4): 1109-1120, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29861885

RESUMO

Associations among parasites affect many aspects of host-parasite dynamics, but a lack of analytical tools has limited investigations of parasite correlations in observational data that are often nested across spatial and biological scales.Here we illustrate how hierarchical, multiresponse modeling can characterize parasite associations by allowing for hierarchical structuring, offering estimates of uncertainty, and incorporating correlational model structures. After introducing the general approach, we apply this framework to investigate coinfections among four amphibian parasites (the trematodes Ribeiroia ondatrae and Echinostoma spp., the chytrid fungus Batrachochytrium dendrobatidis, and ranaviruses) and among >2000 individual hosts, 90 study sites, and five amphibian host species.Ninety-two percent of sites and 80% of hosts supported two or more pathogen species. Our results revealed strong correlations between parasite pairs that varied by scale (from among hosts to among sites) and classification (microparasite versus macroparasite), but were broadly consistent across taxonomically diverse host species. At the host-scale, infection by the trematode R. ondatrae correlated positively with the microparasites, B. dendrobatidis and ranavirus, which were themselves positively associated. However, infection by a second trematode (Echinostoma spp.) correlated negatively with B. dendrobatidis and ranavirus, both at the host- and site-level scales, highlighting the importance of differential relationships between micro- and macroparasites.Given the extensive number of coinfecting symbiont combinations inherent to natural systems, particularly across multiple host species, multiresponse modeling of cross-sectional field data offers a valuable tool to identify a tractable number of hypothesized interactions for experimental testing while accounting for uncertainty and potential sources of co-exposure. For amphibians specifically, the high frequency of co-occurrence and coinfection among these pathogens - each of which is known to impair host fitness or survival - highlights the urgency of understanding parasite associations for conservation and disease management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...