Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1237176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662111

RESUMO

Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both in vitro and in vivo. Expressing the developmental transcription factor Neurogenin2 (Ngn2) in OPCs isolated from adult rat cortex resulted in their expression of early neuronal lineage markers and genes while downregulating expression of OPC markers and genes. Ngn2 induced progression through a neuronal lineage to express mature neuronal markers and functional activity as glutamatergic neurons. In vivo retroviral gene delivery of Ngn2 to naive adult rat cortex ensured restricted targeting to proliferating OPCs. Ngn2 expression in OPCs resulted in their lineage re-specification and transition through an immature neuronal morphology into mature pyramidal cortical neurons with spiny dendrites, axons, synaptic contacts, and subtype specification matching local cytoarchitecture. Lineage re-specification of rat cortical OPCs occurred without prior injury, demonstrating these glial progenitor cells need not be put into a reactive state to achieve lineage reprogramming. These results show it may be feasible to precisely engineer additional neurons directly in adult cerebral cortex for experimental study or potentially for therapeutic use to modify dysfunctional or damaged circuitry.

2.
J Alzheimers Dis ; 91(1): 273-290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36442195

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a progressive loss of cognitive function. Currently, no effective treatment regimen is available. Lithium, a mood stabilizer for bipolar disorder, exerts broad neuroprotective and neurotrophic actions and improves cognitive function. OBJECTIVE: The study investigated if lithium stabilizes Ca2+ signaling abnormalities in hippocampal neurons and subsequently normalize downstream effects on AD neuropathology and synaptic plasticity in young AD mice. METHODS: Four-month-old 3xTg-AD mice were treated with a LiCl diet chow for 30 days. At the end of the lithium treatment, a combination of two-photon Ca2+ imaging, electrophysiology, and immunohistochemistry assays were used to assess the effects of the LiCl treatment on inositol trisphosphate receptor (IP3R)-dependent endoplasmic reticulum (ER) Ca2+ and voltage-gated Ca2+ channel (VGCC)-mediated Ca2+ signaling in CA1 neurons, neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels and synaptic plasticity in the hippocampus and overlying cortex from 3xTg-ADmice. RESULTS: Thirty-day LiCl treatment reduced aberrant IP3R-dependent ER Ca2+ and VGCC-mediated Ca2+ signaling in CA1 pyramidal neurons from 3xTg-AD mice and restored neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels to control levels in the hippocampal subfields and overlying cortex. The LiCl treatment enhanced post-tetanic potentiation (PTP), a form of short-term plasticity in the hippocampus. CONCLUSION: The study found that lithium exerts therapeutic effects across several AD-associated early neuronal signaling abnormalities including aberrant Ca2+ signaling, nNOS, and p-tau formation and enhances short-term synaptic plasticity. Lithium could serve as an effective treatment or co-therapeutic for AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Óxido Nítrico Sintase Tipo I , Lítio , Cálcio , Hipocampo/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas tau
3.
J Neurosci ; 41(39): 8262-8277, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34413203

RESUMO

Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.


Assuntos
Cocaína/administração & dosagem , Fissura/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/metabolismo , Animais , Cálcio/metabolismo , Comportamento de Procura de Droga/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Autoadministração
4.
Front Cell Neurosci ; 15: 652721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867941

RESUMO

Traumatic brain injury (TBI), and related diseases such as chronic traumatic encephalopathy (CTE) and Alzheimer's (AD), are of increasing concern in part due to enhanced awareness of their long-term neurological effects on memory and behavior. Repeated concussions, vs. single concussions, have been shown to result in worsened and sustained symptoms including impaired cognition and histopathology. To assess and compare the persistent effects of single or repeated concussive impacts on mediators of memory encoding such as synaptic transmission, plasticity, and cellular Ca2+ signaling, a closed-head controlled cortical impact (CCI) approach was used which closely replicates the mode of injury in clinical cases. Adult male rats received a sham procedure, a single impact, or three successive impacts at 48-hour intervals. After 30 days, hippocampal slices were prepared for electrophysiological recordings and 2-photon Ca2+ imaging, or fixed and immunostained for pathogenic phospho-tau species. In both concussion groups, hippocampal circuits showed hyper-excitable synaptic responsivity upon Schaffer collateral stimulation compared to sham animals, indicating sustained defects in hippocampal circuitry. This was not accompanied by sustained LTP deficits, but resting Ca2+ levels and voltage-gated Ca2+ signals were elevated in both concussion groups, while ryanodine receptor-evoked Ca2+ responses decreased with repeat concussions. Furthermore, pathogenic phospho-tau staining was progressively elevated in both concussion groups, with spreading beyond the hemisphere of injury, consistent with CTE. Thus, single and repeated concussions lead to a persistent upregulation of excitatory hippocampal synapses, possibly through changes in postsynaptic Ca2+ signaling/regulation, which may contribute to histopathology and detrimental long-term cognitive symptoms.

5.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033164

RESUMO

Traditional approaches to studying Alzheimer's disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties. We selected an AD patient population expressing mutations in presenilin 1 (mPS1), which is linked to increased amyloid production, tau pathology, and calcium signaling abnormalities, among other features. While these AD components are detailed in model systems, they have yet to be collectively identified in human neurons. Thus, we conducted molecular, immune-based, electrophysiological, and calcium imaging studies to establish patterns of cellular pathology in this patient population. We found that mPS1 HiNs generate increased Aß42 and hyperphosphorylated tau species relative to non-AD controls, and exaggerated ER calcium responses that are normalized with ryanodine receptor (RyR) negative allosteric modulators. The inflammasome product, interleukin-18 (IL-18), also increased PS1 expression. This work highlights the potential for HiNs to model AD pathology and validates their role in defining cellular pathogenesis and their utility for therapeutic screening.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Mutação/genética , Neurônios/patologia , Presenilina-1/genética , Regulação Alostérica/fisiologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Neurônios/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas tau/metabolismo
6.
J Biomech Eng ; 139(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28975276

RESUMO

Neural recording and stimulation with high spatial and temporal resolution are highly desirable in the study of neurocommunication and diseases. Planar multiple microelectrode arrays (MEA) or quasi-three-dimensional (3D) MEA with fixed height have been proposed by many researchers and become commercially available. In this paper, we present the design, fabrication, and test of a novel true 3D multiple electrode array for brain slice stimulation and recording. This MEA is composed of 105 microelectrodes with 50 µm diameter and 125 µm center-to-center spacing integrated in a 1.2 × 1.2 mm2 area. This "true" 3D MEA allows us to precisely position the individual electrodes by piezoelectric-based actuators to penetrate the inactive tissue layer and to approach the active neurons so as to optimize the recording and stimulation of electrical field potential. The capability to stimulate nerve fibers and record postsynaptic field potentials was demonstrated in an experiment using mouse brain hippocampus slice.


Assuntos
Eletrofisiologia/instrumentação , Neurônios/citologia , Animais , Desenho de Equipamento , Hipocampo/citologia , Camundongos , Microeletrodos
7.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28631094

RESUMO

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Transtornos Cognitivos/metabolismo , Processamento de Proteína Pós-Traducional , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/patologia , Animais , Sinalização do Cálcio , Transtornos Cognitivos/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/fisiologia , Fosforilação , Reconhecimento Psicológico/fisiologia , Retículo Sarcoplasmático/metabolismo
8.
Biochem Biophys Res Commun ; 483(4): 988-997, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27659710

RESUMO

The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aß and APP processing, in concert with poor association between brain Aß levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.


Assuntos
Doença de Alzheimer/patologia , Sinapses/patologia , Doença de Alzheimer/metabolismo , Animais , Sinalização do Cálcio , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Humanos , Plasticidade Neuronal , Sinapses/metabolismo
9.
EMBO Mol Med ; 8(4): 328-45, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26902204

RESUMO

Apolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long-term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19. Here, we report that the balance of ApoER2 exon 19 splicing is deregulated in postmortem brain tissue from AD patients and in a transgenic mouse model of AD To test the role of deregulated ApoER2 splicing in AD, we designed an antisense oligonucleotide (ASO) that increases exon 19 splicing. Treatment of AD mice with a single dose of ASO corrected ApoER2 splicing for up to 6 months and improved synaptic function and learning and memory. These results reveal an association between ApoER2 isoform expression and AD, and provide preclinical evidence for the utility of ASOs as a therapeutic approach to mitigate Alzheimer's disease symptoms by improving ApoER2 exon 19 splicing.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA , Doença de Alzheimer/patologia , Animais , Encéfalo/fisiologia , Modelos Animais de Doenças , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Aprendizagem , Memória , Camundongos , Camundongos Transgênicos , Oligonucleotídeos Antissenso/genética , Resultado do Tratamento
10.
Neurobiol Aging ; 34(6): 1632-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23337342

RESUMO

Alzheimer's disease (AD) is a multifactorial disorder of unknown etiology. Mechanistically, beta amyloid peptides (Aß) and elevated Ca(2+) have been implicated as proximal and likely interactive features of the disease process. We tested the hypothesis that proximity to Aß plaque might exacerbate activity-dependent neuronal Ca(2+) signaling in hippocampal pyramidal neurons from APPSWE/PS1M146V mice. Using combined approaches of whole cell patch clamp recording and 2-photon imaging of neuronal Ca(2+) signals with thioflavin-S plaque labeling in hippocampal slices, we found no correlation between thioflavin-S labeled Aß plaque proximity and Ca(2+) responses triggered by ryanodine receptor (RyR) activation or action potentials in either dendrites or somata of AD mice, regardless of age. Baseline and RyR-stimulated spontaneous excitatory postsynaptic potentials also showed little difference in relation to Aß plaque proximity. Consistent with previous studies, RyR-evoked Ca(2+) release in APPSWE/PS1M146V mice was greater than in nontransgenic controls. Within the soma, RyR-evoked Ca(2+) release was elevated in older APPSWE/PS1M146V mice compared with younger APPSWE/PS1M146V mice, but was still independent of plaque proximity. The results indicate that early Ca(2+) signaling disruptions can become yet more severe with age through mechanisms independent of Aß plaques, suggesting that alternative pathogenic mechanisms might contribute to AD-associated dysfunction.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Sinalização do Cálcio/genética , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatologia , Presenilina-1 , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/efeitos adversos , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Placa Amiloide/genética , Presenilina-1/genética
11.
Bioorg Med Chem Lett ; 22(4): 1633-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22281189

RESUMO

The well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.


Assuntos
Fluorenos/química , Agonistas Nicotínicos/síntese química , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos , Tilorona/química , Tilorona/farmacologia , Animais , Estrutura Molecular , Agonistas Nicotínicos/química , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade , Receptor Nicotínico de Acetilcolina alfa7
12.
PLoS One ; 7(12): e52056, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284867

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca(2+) homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca(2+) signaling, predominantly through the ER-localized inositol triphosphate (IP(3)) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca(2+) upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca(2+) imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca(2+) signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aß deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca(2+) aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Retículo Endoplasmático/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Dantroleno/farmacologia , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transmissão Sináptica/efeitos dos fármacos
13.
Eur J Pharmacol ; 647(1-3): 37-47, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20816816

RESUMO

Genistein and 5-hydroxyindole (5-HI) potentiate the α7 nicotinic acetylcholine receptor current by primarily increasing peak amplitude, a property of type I α7 positive allosteric modulation. In this study, the effects of these two compounds were investigated at two different α7/5-HT(3) chimeras (chimera 1, comprising of extracellular α7 N-terminus fused to the remainder of 5-HT(3A), and chimera 2 containing an additional α7 encoded M2-M3 loop), and wild-type α7 and 5-HT(3A) receptors. Agonist-evoked responses, examined by expression of the chimeras in Xenopus laevis oocytes or HEK-293 cells, revealed that currents decayed slower and compounds {rank order: N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)~2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-phenyl-1,3,4-oxadiazole (NS6784)>acetylcholine>choline} were more potent in chimera 2 than chimera 1 or α7 receptors. In chimera 2, genistein and 5-HI potentiated agonist-evoked responses (EC(50): 4-5 µM for genistein and 300-500 µM for 5-HI) and at higher concentrations evoked current directly consistent with ago-allosteric modulation. At chimera 1 and 5-HT(3A) receptors, neither compound directly evoked any current and 5-HI, only at chimera 1, was able to potentiate agonist-evoked responses. Genistein and 5-HI did not inhibit the binding of the α7 agonist [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1] heptane ([(3)H]A-585539) to rat brain or chimera 2. In summary, this study supports the role of the M2-M3 loop being critical for the positive allosteric effect of genistein, but not 5-HI, and in agonist-evoked response fine-tuning. The identification of distinct α7 receptor modulatory sites offers unique opportunities for developing CNS therapeutics and understanding its pharmacology.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Genisteína/farmacologia , Indóis/farmacologia , Agonistas Nicotínicos/farmacologia , Piridazinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Regulação Alostérica , Sequência de Aminoácidos , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Feminino , Genisteína/metabolismo , Células HEK293 , Humanos , Indóis/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Agonistas Nicotínicos/metabolismo , Oócitos/efeitos dos fármacos , Estrutura Terciária de Proteína , Piridazinas/metabolismo , Ratos , Receptores Nicotínicos/química , Proteínas Recombinantes de Fusão , Serotonina/metabolismo , Serotonina/farmacologia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
14.
J Pharmacol Exp Ther ; 334(3): 863-74, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20504915

RESUMO

Enhancement of alpha7 nicotinic acetylcholine receptor (nAChR) activity is considered a therapeutic approach for ameliorating cognitive deficits present in Alzheimer's disease and schizophrenia. In this study, we describe the in vitro profile of a novel selective alpha7 nAChR agonist, 5-(6-[(3R)-1-azabicyclo[2,2,2]oct-3-yloxy]pyridazin-3-yl)-1H-indole (ABT-107). ABT-107 displayed high affinity binding to alpha7 nAChRs [rat or human cortex, [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1]heptane (A-585539), K(i) = 0.2-0.6 nM or [(3)H]methyllycaconitine (MLA), 7 nM] that was at least 100-fold selective versus non-alpha7 nAChRs and other receptors. Functionally, ABT-107 did not evoke detectible currents in Xenopus oocytes expressing human or nonhuman alpha3beta4, chimeric (alpha6/alpha3)beta4, or 5-HT(3A) receptors, and weak or negligible Ca(2+) responses in human neuroblastoma IMR-32 cells (alpha3* function) and human alpha4beta2 and alpha4beta4 nAChRs expressed in human embryonic kidney 293 cells. ABT-107 potently evoked human and rat alpha7 nAChR current responses in oocytes (EC(50), 50-90 nM total charge, approximately 80% normalized to acetylcholine) that were enhanced by the positive allosteric modulator (PAM) 4-[5-(4-chloro-phenyl)-2-methyl-3-propionyl-pyrrol-1-yl]-benzenesulfonamide (A-867744). In rat hippocampus, ABT-107 alone evoked alpha7-like currents, which were inhibited by the alpha7 antagonist MLA. In dentate gyrus granule cells, ABT-107 enhanced spontaneous inhibitory postsynaptic current activity when coapplied with A-867744. In the presence of an alpha7 PAM [A-867744 or N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-120596)], the addition of ABT-107 elicited MLA-sensitive alpha7 nAChR-mediated Ca(2+) signals in IMR-32 cells and rat cortical cultures and enhanced extracellular signal-regulated kinase phosphorylation in differentiated PC-12 cells. ABT-107 was also effective in protecting rat cortical cultures against glutamate-induced toxicity. In summary, ABT-107 is a selective high affinity alpha7 nAChR agonist suitable for characterizing the roles of this subtype in pharmacological studies.


Assuntos
Indóis/farmacologia , Agonistas Nicotínicos/farmacologia , Quinuclidinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Eletrofisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Isoxazóis/farmacologia , Masculino , Oócitos/efeitos dos fármacos , Células PC12 , Técnicas de Patch-Clamp , Compostos de Fenilureia/farmacologia , Fosforilação , Pirróis/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato , Sulfonamidas/farmacologia , Xenopus , Receptor Nicotínico de Acetilcolina alfa7
15.
Br J Pharmacol ; 158(6): 1486-94, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19845675

RESUMO

BACKGROUND AND PURPOSE: Several agonists of the alpha7 nicotinic acetylcholine receptor (nAChR) have been developed for treatment of cognitive deficits. However, agonist efficacy in vivo is difficult to reconcile with rapid alpha7 nAChR desensitization in vitro; and furthermore, the correlation between in vitro receptor efficacy and in vivo behavioural efficacy is not well delineated. The possibility that agonists of this receptor actually function in vivo as inhibitors via desensitization has not been finally resolved. EXPERIMENTAL APPROACH: Two structurally related alpha7 nAChR agonists were characterized and used to assess the degree of efficacy required in a behavioural paradigm. KEY RESULTS: NS6784 activated human and rat alpha7 nAChR with EC(50)s of 0.72 and 0.88 microM, and apparent efficacies of 77 and 97% respectively. NS6740, in contrast, displayed little efficacy at alpha7 nAChR (<2% in oocytes, < or =8% in GH4C1 cells), although its agonist-like properties were revealed by adding a positive allosteric modulator of alpha7 nAChRs or using the slowly desensitizing alpha7V274T receptor. In mouse inhibitory avoidance (IA) memory retention, NS6784 enhanced performance as did the 60% partial agonist A-582941. In contrast, NS6740 did not enhance performance, but blocked effects of A-582941. CONCLUSIONS AND IMPLICATIONS: Collectively, these findings suggest that a degree of alpha7 nAChR agonist efficacy is required for behavioural effects in the IA paradigm, and that such behavioural efficacy is not due to alpha7 nAChR desensitization. Also, a partial agonist of very low efficacy for this receptor could be used as an inhibitor, in the absence of alpha7 nAChR antagonists with favourable CNS penetration.


Assuntos
Compostos Azabicíclicos/farmacologia , Furanos/farmacologia , Agonistas Nicotínicos/farmacologia , Oxidiazóis/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Regulação Alostérica , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Compostos Azabicíclicos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/fisiopatologia , Relação Dose-Resposta a Droga , Furanos/administração & dosagem , Humanos , Masculino , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oxidiazóis/administração & dosagem , Piridazinas/farmacologia , Pirróis/farmacologia , Ratos , Receptores Nicotínicos/metabolismo , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
16.
Assay Drug Dev Technol ; 7(4): 374-90, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19689206

RESUMO

Neuronal acetylcholine receptors (nAChRs) of the alpha7 subtype are ligand-gated ion channels that are widely distributed throughout the central nervous system and considered as attractive targets for the treatment of various neuropsychiatric and neurodegenerative diseases. Both agonists and positive allosteric modulators (PAMs) are being developed as means to enhance the function of alpha7 nAChRs. The in vitro characterization of alpha7 ligands, including agonists and PAMs, relies on multiple technologies, but only electrophysiological measurements assess the channel activity directly. Traditional electrophysiological approaches utilizing two-electrode voltage clamp or patch clamp in isolated cells have very low throughput to significantly impact drug discovery. Abbott (Abbott Park, IL) has developed a two-electrode voltage clamp-based system, the Parallel Oocyte Electrophysiology Test Station (POETs()), that allows for the investigation of ligand-gated ion channels such as alpha7 nAChRs in a higher-throughput manner. We describe the utility of this technology in the discovery of selective alpha7 agonists and PAMs. With alpha7 agonists, POETs experiments involved both single- and multiple-point concentration-response testing revealing diverse activation profiles (zero efficacy desensitizing, partial, and full agonists). In the characterization of alpha7 PAMs, POETs testing has served as a reliable primary or secondary screen identifying compounds that fall into distinct functional types depending on the manner in which current potentiation occurred. Type I PAMs (eg, genistein, NS1738, and 5-hydroxyindole) increase predominantly the peak amplitude response, type II PAMs affect the peak current and current decay (eg, PNU-120,596 and 4-(naphthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), and anothertype slowing the current decay kinetics in the absence of increases in the peak current. In summary, POETs technology allows for significant impact on higher throughput in the testing of alpha7 agonists and PAMs and for identification of compounds with unique profiles that could prove valuable in identifying an optimum in vitro profile in the development of therapeutics for which the alpha7 subtype is considered.


Assuntos
Agonistas Nicotínicos/farmacologia , Oócitos/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Compostos de Benzilideno/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Descoberta de Drogas , Eletrofisiologia , Feminino , Humanos , Isoxazóis/farmacologia , Neuroblastoma/patologia , Oócitos/efeitos dos fármacos , Técnicas de Patch-Clamp , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
17.
Biochem Pharmacol ; 78(7): 795-802, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19481067

RESUMO

Numerous pharmaceutical efforts have targeted neuronal nicotinic receptors (nAChRs) for amelioration of cognitive deficits. While alpha4beta2 and alpha7 are the more prominent nAChR in brain, other heteromeric nAChR can have important impact on agonist pharmacology. ABT-089 is a pioneer nAChR agonist found to enhance cognitive function with an exceptionally low incidence of adverse effects. To further investigate the mechanism of action of ABT-089, we evaluated its function in mouse brain preparations in which we have characterized the subunit composition of native nAChR. Among alpha4beta2*-nAChR, ABT-089 had partial agonist activity (7-23% of nicotine) and high selectivity for alpha4alpha5beta2 nAChR as evidenced by loss of activity in thalamus of alpha5(-/-) mice. ABT-089 stimulated [(3)H]-dopamine release (57%) exceeded the activity at alpha4beta2* nAChR, that could be explained by the activity at alpha6beta2* nAChR. The concentration-response relationship for ABT-089 stimulation of alpha6beta2* nAChR was biphasic. EC(50) and efficacy values for ABT-089, respectively, were 28 microM and 98% at the less sensitive alpha6beta2* nAChR and 0.11 microM and 36% at the more sensitive subtype (the most sensitive target for ABT-089 identified to date). ABT-089 had essentially no agonist or antagonist activity at concentrations

Assuntos
Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Receptores Nicotínicos/fisiologia , Acetilcolina/metabolismo , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Técnicas In Vitro , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidades Proteicas/fisiologia , Receptores Nicotínicos/genética , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Tálamo/metabolismo
18.
Biochem Pharmacol ; 78(7): 844-51, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19555668

RESUMO

alpha4beta2 neuronal nicotinic receptors (nAChRs) can exist in high and low sensitivity states possibly due to distinct stoichiometries during subunit assembly: (alpha4)(2)(beta2)(3) pentamer (high sensitivity, HS) and (alpha4)(3)(beta2)(2) pentamer (low sensitivity, LS). To determine if there is a linkage between HS or LS states and receptor-mediated responses in brain, we profiled several clinically studied alpha4beta2* nAChR agonists for the displacement of radioligand binding to alpha4beta2 [(3)H]-cytisine sites in rat brain membranes, effects on stimulation of [(3)H]-dopamine release from slices of rat prefrontal cortex and striatum, and activation of HS and LS human alpha4beta2 nAChRs expressed in Xenopus laevis oocytes. Binding affinities (pK(i)) and potency (pEC(50)) values for [(3)H]-dopamine release closely correlated with a rank order: varenicline>(-)-nicotine>AZD3480>dianicline congruent with ABT-089. Further, a good correlation was observed between [(3)H]-dopamine release and HS alpha4beta2 pEC(50) values, but not between [(3)H]-dopamine release and LS alpha4beta2. The relative efficacies of the agonists ranged from full to partial agonists. Varenicline behaved as a partial agonist in stimulating [(3)H]-dopamine release and activating both HS and LS alpha4beta2 nAChRs expressed in oocytes. Conversely, ABT-089, AZD3480 and dianicline exhibited little efficacy at LS alpha4beta2 (<5%), were more effective at HS alpha4beta2 nAChRs, and in stimulating cortical and striatal [(3)H]-dopamine release >or=30%. In the presence of alpha-conotoxin MII to block alpha6beta2* nAChRs, the alpha4beta2* alpha-conotoxin-insensitive [(3)H]-dopamine release stimulated by these ligands correlates well with their interactions at HS, but not LS. In summary, this study provides support for HS alpha4beta2* nAChR involvement in neurotransmitter release.


Assuntos
Encéfalo/efeitos dos fármacos , Dopamina/metabolismo , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/fisiologia , Animais , Encéfalo/metabolismo , Conotoxinas/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Feminino , Humanos , Técnicas In Vitro , Ligantes , Masculino , Antagonistas Nicotínicos/farmacologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Multimerização Proteica , Subunidades Proteicas/agonistas , Ensaio Radioligante , Ratos , Xenopus laevis
19.
J Med Chem ; 52(10): 3377-84, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19419141

RESUMO

The discovery of a series of pyrrole-sulfonamides as positive allosteric modulators (PAM) of alpha7 nAChRs is described. Optimization of this series led to the identification of 19 (A-867744), a novel type II PAM with good potency and selectivity. Compound 19 showed acceptable pharmacokinetic profile across species and brain levels sufficient to modulate alpha7 nAChRs. In a rodent model of sensory gating, 19 normalized gating deficits. These results suggest that 19 represents a novel class of molecules capable of allosteric modulation of the alpha7 nAChRs.


Assuntos
Regulação Alostérica , Pirróis/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Encéfalo/metabolismo , Células Cultivadas , Descoberta de Drogas , Camundongos , Microssomos , Oócitos , Técnicas de Patch-Clamp , Farmacocinética , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7 , Benzenossulfonamidas
20.
J Pharmacol Exp Ther ; 330(1): 257-67, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19389923

RESUMO

Targeting alpha7 neuronal acetylcholine receptors (nAChRs) with selective agonists and positive allosteric modulators (PAMs) is considered a therapeutic approach for managing cognitive deficits in schizophrenia and Alzheimer's disease. In this study, we describe a novel type II alpha7 PAM, 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), that exhibits a unique pharmacological profile. In oocytes expressing alpha7 nAChRs, A-867744 potentiated acetylcholine (ACh)-evoked currents, with an EC(50) value of approximately 1 microM. At highest concentrations of A-867744 tested, ACh-evoked currents were essentially nondecaying. At lower concentrations, no evidence of a distinct secondary component was evident in contrast to 4-naphthalen-1-yl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS), another type II alpha7 PAM. In the presence of A-867744, ACh concentration responses were potentiated by increases in potency, Hill slope, and maximal efficacy. When examined in rat hippocampus CA1 stratum radiatum interneurons or dentate gyrus granule cells, A-867744 (10 microM) increased choline-evoked alpha7 currents and recovery from inhibition/desensitization, and enhanced spontaneous inhibitory postsynaptic current activity. A-867744, like other alpha7 PAMs tested [1-(5-chloro-2-hydroxyphenyl)-3-(2-chloro-5-trifluoromethyl-phenyl)urea (NS1738), TQS, and 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596)], did not displace the binding of [(3)H]methyllycaconitine to rat cortex alpha7(*) nAChRs. However, unlike these PAMs, A-867744 displaced the binding of the agonist [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1]heptane (A-585539) in rat cortex, with a K(i) value of 23 nM. A-867744 neither increased agonist-evoked responses nor displaced the binding of [(3)H]A-585539 in an alpha7/5-hydroxytryptamine(3) (alpha7/5-HT(3)) chimera, suggesting an interaction distinct from the alpha7 N terminus or M2-3 loop. In addition, A-867744 failed to potentiate responses mediated by 5-HT(3A) or alpha3beta4 and alpha4beta2 nAChRs. In summary, this study identifies a novel and selective alpha7 PAM showing activity at recombinant and native alpha7 nAChRs exhibiting a unique pharmacological interaction with the receptor.


Assuntos
Pirróis/química , Pirróis/farmacologia , Receptores Nicotínicos/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Linhagem Celular , Colinérgicos/química , Colinérgicos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7 , Benzenossulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...