Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacoecon Open ; 7(5): 709-722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37103750

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is a progressive inflammatory kidney disease requiring long-term treatment to reduce the risk of progression to kidney failure. Here, we present two systematic literature reviews (SLRs) to identify and summarize literature reporting the humanistic and economic burden of IgAN. METHODS: Electronic literature databases (Ovid Embase, PubMed, and Cochrane) were searched for relevant literature on 29 November 2021, supplemented with gray literature searches. Studies reporting any health-related quality of life (HRQoL) or health state utility outcomes in IgAN patients were included in the humanistic impact SLR, and studies reporting the costs and healthcare resource utilization associated with or economic models of IgAN disease management were included in the economic burden SLR. Narrative synthesis was used to discuss the heterogeneous studies included in the SLRs. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) and Cochrane guidelines were followed, and all included studies were assessed for risk of bias using the Center for Evidence-Based Management tool for Critical Appraisal of a Survey or the Drummond Checklist. RESULTS: A total of 876 and 1122 references were identified from electronic and gray literature searches for humanistic and economic burden, respectively. Three studies reporting humanistic impact and five studies reporting economic burden met criteria for inclusion in these SLRs. The included humanistic studies reported patient preferences in the USA and China, HRQoL for patients with IgAN in Poland, and impact of exercise on HRQoL for patients with IgAN in China. The five economic studies reported costs of IgAN treatment in Canada, Italy, and China, along with two economic models from Japan. DISCUSSION: Current literature suggests IgAN is associated with substantial humanistic and economic burdens. However, these SLRs demonstrate the paucity of research conducted to specifically describe the humanistic or economic burden of IgAN and highlight the need for further research.

2.
Environ Microbiol ; 23(1): 15-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185970

RESUMO

Our lower gastrointestinal tract plays host to a vast consortium of microbes, known as the human gut microbiota (HGM). The HGM thrives on a complex and diverse range of glycan structures from both dietary and host sources, the breakdown of which requires the concerted action of cohorts of carbohydrate-active enzymes (CAZymes), carbohydrate-binding proteins, and transporters. The glycan utilization profile of individual taxa, whether 'specialist' or 'generalist', is dictated by the number and functional diversity of these glycan utilization systems. Furthermore, taxa in the HGM may either compete or cooperate in glycan deconstruction, thereby creating a complex ecological web spanning diverse nutrient niches. As a result, our diet plays a central role in shaping the composition of the HGM. This review presents an overview of our current understanding of glycan utilization by the HGM on three levels: (i) molecular mechanisms of individual glycan deconstruction and uptake by key bacteria, (ii) glycan-mediated microbial interactions, and (iii) community-scale effects of dietary changes. Despite significant recent advancements, there remains much to be discovered regarding complex glycan metabolism in the HGM and its potential to affect positive health outcomes.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Polissacarídeos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Dieta , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos
4.
Nat Microbiol ; 3(11): 1314-1326, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349080

RESUMO

Glycans are major nutrients for the human gut microbiota (HGM). Arabinogalactan proteins (AGPs) comprise a heterogenous group of plant glycans in which a ß1,3-galactan backbone and ß1,6-galactan side chains are conserved. Diversity is provided by the variable nature of the sugars that decorate the galactans. The mechanisms by which nutritionally relevant AGPs are degraded in the HGM are poorly understood. Here we explore how the HGM organism Bacteroides thetaiotaomicron metabolizes AGPs. We propose a sequential degradative model in which exo-acting glycoside hydrolase (GH) family 43 ß1,3-galactanases release the side chains. These oligosaccharide side chains are depolymerized by the synergistic action of exo-acting enzymes in which catalytic interactions are dependent on whether degradation is initiated by a lyase or GH. We identified two GHs that establish two previously undiscovered GH families. The crystal structures of the exo-ß1,3-galactanases identified a key specificity determinant and departure from the canonical catalytic apparatus of GH43 enzymes. Growth studies of Bacteroidetes spp. on complex AGP revealed 3 keystone organisms that facilitated utilization of the glycan by 17 recipient bacteria, which included B. thetaiotaomicron. A surface endo-ß1,3-galactanase, when engineered into B. thetaiotaomicron, enabled the bacterium to utilize complex AGPs and act as a keystone organism.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Glicosídeo Hidrolases/metabolismo , Mucoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/classificação , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Bacteroides thetaiotaomicron/metabolismo , Cristalografia por Raios X , Microbioma Gastrointestinal/fisiologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Humanos , Oligossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Especificidade por Substrato
5.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255254

RESUMO

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Assuntos
Bacteroides/metabolismo , Colo/microbiologia , Dieta , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Genes Bacterianos/genética , Glicosídeo Hidrolases , Ácidos Hexurônicos , Humanos , Mutagênese Sítio-Dirigida , Células Vegetais/metabolismo
6.
Nature ; 544(7648): 65-70, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28329766

RESUMO

The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.


Assuntos
Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/metabolismo , Biocatálise , Trato Gastrointestinal/microbiologia , Glicosídeo Hidrolases/metabolismo , Pectinas/química , Pectinas/metabolismo , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Boratos/química , Boratos/metabolismo , Domínio Catalítico , Microbioma Gastrointestinal , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificação , Humanos , Modelos Moleculares , Especificidade por Substrato
9.
Nat Commun ; 6: 7481, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26112186

RESUMO

The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota.


Assuntos
Bacteroides/metabolismo , Xilanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Genômica , Humanos , Transporte Proteico , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...