Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanotechnology ; 27(49): 49LT02, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834312

RESUMO

Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (<40 nm thin) of heterogeneous composition (metal, insulator, semiconductor, etc) with large lateral dimension structures (aspect ratio >1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 µm.

2.
Nanotechnology ; 27(47): 475504, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779111

RESUMO

The recent development of low-temperature (<200 °C) atomic layer deposition (ALD) for fabrication of freestanding nanostructures has enabled consideration of active device design based on engineered ultrathin films. This paper explores audible sound production from thermoacoustic loudspeakers fabricated from suspended tungsten nanobridges formed by ALD. Additionally, this paper develops an approach to lumped-element modeling for design of thermoacoustic nanodevices and relates the near-field plane wave model of individual transducer beams to the far-field spherical wave sound pressure that can be measured with standard experimental techniques. Arrays of suspended nanobridges with 25.8 nm thickness and sizes as small as 17 µm × 2 µm have been fabricated and demonstrated to produce audible sound using the thermoacoustic effect. The nanobridges were fabricated by ALD of 6.5 nm Al2O3 and 19.3 nm tungsten on sacrificial polyimide, with ALD performed at 130 °C and patterned by standard photolithography. The maximum observed loudspeaker sound pressure level (SPL) is 104 dB, measured at 20 kHz, 9.71 W input power, and 1 cm measurement distance, providing a loudspeaker sensitivity value of ∼64.6 dB SPL/1 mW. Sound production efficiency was measured to vary proportional to frequency f 3 and was directly proportional to input power. The devices in this paper demonstrate industrially feasible nanofabrication of thermoacoustic transducers and a sound production mechanism pertinent to submicron-scale device engineering.

3.
Rev Sci Instrum ; 83(8): 083702, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938298

RESUMO

We present a near-field scanning microwave microscope (NSMM) that has been configured for imaging photovoltaic samples. Our system incorporates a Pt-Ir tip inserted into an open-ended coaxial cable to form a weakly coupled resonator, allowing the microwave reflection S(11) signal to be measured across a sample over a frequency range of 1 GHz - 5 GHz. A phase-tuning circuit increased impedance-measurement sensitivity by allowing for tuning of the S(11) minimum down to -78 dBm. A bias-T and preamplifier enabled simultaneous, non-contact measurement of the DC tip-sample current, and a tuning fork feedback system provided simultaneous topographic data. Light-free tuning fork feedback provided characterization of photovoltaic samples both in the dark and under illumination at 405 nm. NSMM measurements were obtained on an inhomogeneous, third-generation Cu(In,Ga)Se(2) (CIGS) sample. The S(11) and DC current features were found to spatially broaden around grain boundaries with the sample under illumination. The broadening is attributed to optically generated charge that becomes trapped and changes the local depletion of the grain boundaries, thereby modifying the local capacitance. Imaging provided by the NSMM offers a new RF methodology to resolve and characterize nanoscale electrical features in photovoltaic materials and devices.

4.
Nanotechnology ; 20(43): 434010, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19801765

RESUMO

Single-walled carbon nanotube field-effect transistors (CNFETs) are promising functional structures in future micro- or nanoelectronic systems and sensor applications. Research on the fundamental device concepts includes the investigation of the conditions for stable long term CNFET operation. CNFET operation in ambient air leads to on-state current degradation and fluctuating signals due to the well-known sensitivity of the electronic properties of the CNT to many environmental condition changes. It is the goal of device and sensor research to understand various kinds of sensor-environment interactions and to overcome the environmental sensitivity. Here, we show that the encapsulation of CNFETs by a thermal atomic-layer-deposited (ALD) aluminium oxide (Al(2)O(3)) layer of approximately 100 nm leads to stable device operation for 260 days and reduces their sensitivity to the environment. The characteristics of CNFETs prior to and after Al(2)O(3) encapsulation are comparatively investigated. It is found that encapsulation improves the stability of the CNFET characteristics with respect to the gate threshold voltage, hysteresis width and the on-state current, while 1/f noise is lowered by up to a factor of 7. Finally, CNFETs embedded in a dielectric membrane are employed as pressure sensors to demonstrate sensor operation of CNFETs encapsulated by ALD as piezoresistive transducers.

5.
Nano Lett ; 6(2): 233-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16464041

RESUMO

We report on the fabrication and characterization of bulk micromachined pressure sensors based on individual single-walled carbon nanotubes (SWNTs) as the active electromechanical transducer elements. The electromechanical sensor device consists of an individual electrically connected SWNT adsorbed on top of a 100-nm-thick atomic layer deposited (ALD) circular alumina (Al(2)O(3)) membrane with a radius in the range of 50-100 microm. A white light interferometer (WLI) was used to measure the deflection of the membrane due to differential pressure, and the mechanical properties of the device were characterized by bulge testing. Finally, we performed the first electromechanical measurements on strained metallic SWNTs adhering to a membrane and found a piezoresistive gauge factor of approximately 210 for metallic SWNTs.


Assuntos
Nanotubos de Carbono/química , Óxido de Alumínio/química , Eletrodos , Luz , Membranas Artificiais , Nanotubos de Carbono/efeitos da radiação , Tamanho da Partícula , Fotoquímica , Pressão , Sensibilidade e Especificidade , Propriedades de Superfície
6.
Opt Lett ; 23(8): 645-7, 1998 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18084604

RESUMO

Quadratic aberration is successfully corrected with a segmented microelectromechanical deformable mirror in conjunction with a refractive lenslet array. Use of the lenslet array greatly improves the effective fill factor of the correcting element. Experimental results show correction approaching the diffraction limit for an extreme spherical aberration.

7.
Artigo em Inglês | MEDLINE | ID: mdl-18244203

RESUMO

A micromachined system has been developed for reducing the vibration sensitivity of surface transverse wave (STW) resonators. The isolation system consists of a support platform for mounting the STW resonator, four support arms, and a support rim. The entire isolation system measures 8 mm by 9 mm by 0.4 mm without the resonator mounted on the platform. The system acts as a passive vibration isolation system, decreasing the magnitude of high frequency (>1.2 kHz) vibrations. Finite element analysis is used to analyze the acceleration sensitivity of the mounted resonator. The isolation system is then modeled as a damped mass-spring system and the transmissibility of vibration from the support rim to the support platform is calculated. Multiplying the acceleration sensitivity of the resonator by the transmissibility results in the expected system vibration sensitivity. The isolation systems are fabricated using two sided bulk etching of (110) oriented silicon wafers. STW resonators were mounted on the isolation systems, and the isolated units were mounted on commercial hybrid oscillator substrates. Vibration sensitivity measurements were taken for vibrations with frequencies ranging from 100 Hz to 5 kHz. The measured data show that the system performs as expected with a low frequency (<500 Hz) vibration sensitivity of 1.8x10(-8)/g and a high frequency roll off of 12 dB/octave.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...