Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hortic Res ; 5: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510768

RESUMO

4-Aminobutyrate accumulates in plants under abiotic stress. Here, targeted quantitative profiling of metabolites and transcripts was conducted to monitor glutamate- and polyamine-derived 4-aminobutyrate production and its subsequent catabolism to succinate or 4-hydroxybutyrate in apple (Malus x domestica Borkh.) fruit stored at 0 °C with 2.5 kPa O2 and 0.03 or 5 kPa CO2 for 16 weeks. Low-temperature-induced protein hydrolysis appeared to be responsible for the enhanced availability of amino acids during early storage, and the resulting higher glutamate level stimulated 4-aminobutyrate levels more than polyamines. Elevated CO2 increased the levels of polyamines, as well as succinate and 4-hydroxybutyrate, during early storage, and 4-aminobutyrate and 4-hydroxybutyrate over the longer term. Expression of all of the genes likely involved in 4-aminobutyrate metabolism from glutamate/polyamines to succinate/4-hydroxybutyrate was induced in a co-ordinated manner. CO2-regulated expression of apple GLUTAMATE DECARBOXYLASE 2, AMINE OXIDASE 1, ALDEHYDE DEHYDROGENASE 10A8 and POLYAMINE OXIDASE 2 was evident with longer term storage. Evidence suggested that respiratory activities were restricted by the elevated CO2/O2 environment, and that decreasing NAD+ availability and increasing NADPH and NADPH/NADP+, respectively, played key roles in the regulation of succinate and 4-hydroxybutyate accumulation. Together, these findings suggest that both transcriptional and biochemical mechanisms are associated with 4-aminobutyrate and 4-hydroxybutyrate metabolism in apple fruit stored under multiple abiotic stresses.

2.
Front Plant Sci ; 8: 1399, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855911

RESUMO

Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (cytosolic GLYR1 and plastidial/mitochondrial GLYR2) are considered to be of particular importance under abiotic stress conditions. Here, the apple (Malus × domestica Borkh.) and rice (Oryza sativa L.) GLYR1s and GLYR2s were characterized and their kinetic properties were compared to those of previously characterized GLYRs from Arabidopsis thaliana [L.] Heynh. The purified recombinant GLYRs had an affinity for glyoxylate and succinic semialdehyde, respectively, in the low micromolar and millimolar ranges, and were inhibited by NADP+. Comparison of the GLYR activity in cell-free extracts from wild-type Arabidopsis and a glyr1 knockout mutant revealed that approximately 85 and 15% of the cellular GLYR activity is cytosolic and plastidial/mitochondrial, respectively. Recovery of GLYR activity in purified mitochondria from the Arabidopsis glyr1 mutant, free from cytosolic GLYR1 or plastidial GLYR2 contamination, provided additional support for the targeting of GLYR2 to mitochondria, as well as plastids. The growth of plantlets or roots of various Arabidopsis lines with altered GLYR activity responded differentially to succinic semialdehyde or glyoxylate under chilling conditions. Taken together, these findings highlight the potential regulation of highly conserved plant GLYRs by NADPH/NADP+ ratios in planta, and their roles in the reduction of toxic aldehydes in plants subjected to chilling stress.

3.
Front Plant Sci ; 8: 601, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484477

RESUMO

Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (GLYR1 and GLYR2) are considered to be involved in detoxifying harmful aldehydes, thereby preserving plant health during exposure to various abiotic stresses. Phylogenetic analysis revealed that the two GLYR isoforms appeared in the plant lineage prior to the divergence of the Chlorophyta and Streptophyta, which occurred approximately 750 million years ago. Green fluorescent protein fusions of apple (Malus x domestica Borkh.), rice (Oryza sativa L.) and Arabidopsis thaliana [L.] Heynh GLYRs were transiently expressed in tobacco (Nicotiana tabaccum L.) suspension cells or Arabidopsis protoplasts, as well in methoxyfenozide-induced, stably transformed Arabidopsis seedlings. The localization of apple GLYR1 confirmed that this isoform is cytosolic, whereas apple, rice and Arabidopsis GLYR2s were localized to both mitochondria and plastids. These findings highlight the potential involvement of GLYRs within distinct compartments of the plant cell.

4.
Front Plant Sci ; 5: 144, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782882

RESUMO

1-Methylcyclopropene (1-MCP) delays ethylene-meditated ripening of apple (Malus domestica Borkh.) fruit during controlled atmosphere (CA) storage. Here, we tested the hypothesis that 1-MCP and CA storage enhances the levels of polyamines (PAs) and 4-aminobutyrate (GABA) in apple fruit. A 46-week experiment was conducted with "Empire" apple using a split-plot design with four treatment replicates and 3°C, 2.5 kPa O2, and 0.03 or 2.5 kPa CO2 with or without 1 µL L(-1) 1-MCP. Total PA levels were not elevated by the 1-MCP treatment. Examination of the individual PAs revealed that: (i) total putrescine levels tended to be lower with 1-MCP regardless of the CO2 level, and while this was mostly at the expense of free putrescine, large transient increases in soluble conjugated putrescine were also evident; (ii) total spermidine levels tended to be lower with 1-MCP, particularly at 2.5 kPa CO2, and this was mostly at the expense of soluble conjugated spermidine; (iii) total spermine levels at 2.5 kPa CO2 tended to be lower with 1-MCP, and this was mostly at the expense of both soluble and insoluble conjugated spermine; and (iv) total spermidine and spermine levels at 0.03 kPa were relatively unaffected, compared to 2.5 kPa CO2, but transient increases in free spermidine and spermine were evident. These findings might be due to changes in the conversion of putrescine into higher PAs and the interconversion of free and conjugated forms in apple fruit, rather than altered S-adenosylmethionine availability. Regardless of 1-MCP and CO2 treatments, the availability of glutamate showed a transient peak initially, probably due to protein degradation, and this was followed by a steady decline over the remainder of the storage period which coincided with linear accumulation of GABA. This pattern has been attributed to the stimulation of glutamate decarboxylase activity and inhibition of GABA catabolism, rather than a contribution of PAs to GABA production.

5.
Plant Sci ; 193-194: 130-135, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22794926

RESUMO

4-Aminobutyrate (GABA) accumulates in various plant parts, including bulky fruits such as apples, in response to abiotic stress. It is generally believed that the GABA is derived from glutamate, although a contribution from polyamines is possible. Putrescine, but not spermidine and spermine, generally accumulates in response to the genetic manipulation of polyamine biosynthetic enzymes and abiotic stress. However, the GABA levels in stressed plants are influenced by processes other than putrescine availability. It is hypothesized that the catabolism of putrescine to GABA is regulated by a combination of gene-dependent and -independent processes. The expression of several putative diamine oxidase genes is weak, but highly stress-inducible in certain tissues of Arabidopsis. In contrast, candidate genes that encode 4-aminobutyraldehyde dehydrogenase are highly constitutive, but not stress inducible. Changes in O(2) availability and cellular redox balance due to stress may directly influence the activities of diamine oxidase and 4-aminobutyraldehyde dehydrogenase, thereby restricting GABA formation. Apple fruit is known to accumulate GABA under controlled atmosphere storage and therefore could serve as a model system for investigating the relative contribution of putrescine and glutamate to GABA production.


Assuntos
Arabidopsis/enzimologia , Ácido Glutâmico/metabolismo , Putrescina/metabolismo , Ácido gama-Aminobutírico/biossíntese , Adaptação Fisiológica , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Ácido gama-Aminobutírico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...