Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177583

RESUMO

Most of the buildings that exist today were built based on 2D drawings. Building information models that represent design-stage product information have become prevalent in the second decade of the 21st century. Still, it will take many decades before such models become the norm for all existing buildings. In the meantime, the building industry lacks the tools to leverage the benefits of digital information management for construction, operation, and renovation. To this end, this paper reviews the state-of-the-art practice and research for constructing (generating) and maintaining (updating) geometric digital twins. This paper also highlights the key limitations preventing current research from being adopted in practice and derives a new geometry-based object class hierarchy that mainly focuses on the geometric properties of building objects, in contrast to widely used existing object categorisations that are mainly function-oriented. We argue that this new class hierarchy can serve as the main building block for prioritising the automation of the most frequently used object classes for geometric digital twin construction and maintenance. We also draw novel insights into the limitations of current methods and uncover further research directions to tackle these problems. Specifically, we believe that adapting deep learning methods can increase the robustness of object detection and segmentation of various types; involving design intents can achieve a high resolution of model construction and maintenance; using images as a complementary input can help to detect transparent and specular objects; and combining synthetic data for algorithm training can overcome the lack of real labelled datasets.

2.
AI Civil Eng ; 1(1): 7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38013884

RESUMO

Current research on Digital Twin (DT) is largely focused on the performance of built assets in their operational phases as well as on urban environment. However, Digital Twin has not been given enough attention to construction phases, for which this paper proposes a Digital Twin framework for the construction phase, develops a DT prototype and tests it for the use case of measuring the productivity and monitoring of earthwork operation. The DT framework and its prototype are underpinned by the principles of versatility, scalability, usability and automation to enable the DT to fulfil the requirements of large-sized earthwork projects and the dynamic nature of their operation. Cloud computing and dashboard visualisation were deployed to enable automated and repeatable data pipelines and data analytics at scale and to provide insights in near-real time. The testing of the DT prototype in a motorway project in the Northeast of England successfully demonstrated its ability to produce key insights by using the following approaches: (i) To predict equipment utilisation ratios and productivities; (ii) To detect the percentage of time spent on different tasks (i.e., loading, hauling, dumping, returning or idling), the distance travelled by equipment over time and the speed distribution; and (iii) To visualise certain earthwork operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA