Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 33(9): 1726-1737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37278319

RESUMO

The study aimed to explore the influence of a sports-specific intermittent sprint protocol (ISP) on wheelchair sprint performance and the kinetics and kinematics of sprinting in elite wheelchair rugby (WR) players with and without spinal cord injury (SCI). Fifteen international WR players (age 30.3 ± 5.5 years) performed two 10-s sprints on a dual roller wheelchair ergometer before and immediately after an ISP consisting of four 16-min quarters. Physiological measurements (heart rate, blood lactate concentration, and rating of perceived exertion) were collected. Three-dimensional thorax and bilateral glenohumeral kinematics were quantified. Following the ISP, all physiological parameters significantly increased (p ≤ 0.027), but neither sprinting peak velocity nor distance traveled changed. Players propelled with significantly reduced thorax flexion and peak glenohumeral abduction during both the acceleration (both -5°) and maximal velocity phases (-6° and 8°, respectively) of sprinting post-ISP. Moreover, players exhibited significantly larger mean contact angles (+24°), contact angle asymmetries (+4%), and glenohumeral flexion asymmetries (+10%) during the acceleration phase of sprinting post-ISP. Players displayed greater glenohumeral abduction range of motion (+17°) and asymmetries (+20%) during the maximal velocity phase of sprinting post-ISP. Players with SCI (SCI, n = 7) significantly increased asymmetries in peak power (+6%) and glenohumeral abduction (+15%) during the acceleration phase post-ISP. Our data indicates that despite inducing physiological fatigue resulting from WR match play, players can maintain sprint performance by modifying how they propel their wheelchair. Increased asymmetry post-ISP was notable, which may be specific to impairment type and warrants further investigation.


Assuntos
Desempenho Atlético , Futebol Americano , Cadeiras de Rodas , Humanos , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Futebol Americano/fisiologia , Rugby , Desempenho Atlético/fisiologia , Aceleração , Ácido Láctico
2.
Scand J Med Sci Sports ; 32(8): 1213-1223, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35620900

RESUMO

The study purpose was to examine the biomechanical characteristics of sports wheelchair propulsion and determine biomechanical associations with shoulder pain in wheelchair athletes. Twenty wheelchair court-sport athletes (age: 32 ± 11 years old) performed one submaximal propulsion trial in their sports-specific wheelchair at 1.67 m/s for 3 min and two 10 s sprints on a dual-roller ergometer. The Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI) assessed shoulder pain. During the acceleration phase of wheelchair sprinting, participants propelled with significantly longer push times, larger forces, and thorax flexion range of motion (ROM) than both the maximal velocity phase of sprinting and submaximal propulsion. Participants displayed significantly greater peak glenohumeral abduction and scapular internal rotation during the acceleration phase (20 ± 9° and 45 ± 7°) and maximal velocity phase (14 ± 4° and 44 ± 7°) of sprinting, compared to submaximal propulsion (12 ± 6° and 39 ± 8°). Greater shoulder pain severity was associated with larger glenohumeral abduction ROM (r = 0.59, p = 0.007) and scapular internal rotation ROM (r = 0.53, p = 0.017) during the acceleration phase of wheelchair sprinting, but with lower peak glenohumeral flexion (r = -0.49, p = 0.030), peak abduction (r = -0.48, p = 0.034), and abduction ROM (r = -0.44, p = 0.049) during the maximal velocity phase. Biomechanical characteristics of wheelchair sprinting suggest this activity imposes greater mechanical stress than submaximal propulsion. Kinematic associations with shoulder pain during acceleration are in shoulder orientations linked to a reduced subacromial space, potentially increasing tissue stress.


Assuntos
Articulação do Ombro , Cadeiras de Rodas , Adulto , Fenômenos Biomecânicos , Humanos , Ombro , Dor de Ombro , Extremidade Superior , Adulto Jovem
3.
Int J Sports Physiol Perform ; 17(3): 440-449, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991077

RESUMO

PURPOSE: To compare the effects of typical competition versus high-intensity intermittent warm-up (WU) on thermoregulatory responses and repeated sprint performance during wheelchair rugby game play. METHODS: An intermittent sprint protocol (ISP) simulating the demands of wheelchair rugby was performed by male wheelchair rugby players (7 with cervical spinal cord injury [SCI] and 8 without SCI) following 2 WU protocols. These included a typical competition WU (control) and a WU consisting of high-intensity efforts (INT). Core temperature (Tcore), thermal sensation, and thermal comfort were recorded. Wheelchair performance variables associated to power, speed, and fatigue were also calculated. RESULTS: During the WU, Tcore was similar between conditions for both groups. During the ISP, a higher Tcore was found for SCI compared to NON-SCI (38.1 [0.3] vs 37.7 [0.3] °C: P = .036, d = 0.75), and the SCI group experienced a higher peak Tcore for INT compared with control (39.0 [0.4] vs 38.6 [0.6] °C; P = .004). Peak Tcore occurred later in the ISP for players with SCI (96 [5.8] vs 48 [2.7] min; P < .001). All players reported a higher thermal sensation and thermal comfort following INT (P < .001), with no differences between conditions throughout the ISP. No significant differences were found in wheelchair performance variables during the ISP between conditions (P ≥ .143). CONCLUSIONS: The high-INT WU increased thermal strain in the SCI group during the ISP, potentially due to increased metabolic heat production and impaired thermoregulation, while not impacting on repeated sprint performance. It may be advisable to limit high-INT bouts during a WU in players with SCI to mitigate issues related to hyperthermia in subsequent performance.


Assuntos
Desempenho Atlético , Medula Cervical , Traumatismos da Medula Espinal , Exercício de Aquecimento , Atletas , Desempenho Atlético/fisiologia , Regulação da Temperatura Corporal/fisiologia , Humanos , Masculino
4.
J Biomech ; 126: 110626, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34329882

RESUMO

The purpose of this study was to investigate the longitudinal association between within-subject changes in shoulder pain and alterations in wheelchair propulsion biomechanics in manual wheelchair users. Eighteen (age 33 ± 11 years) manual wheelchair users propelled their own daily living wheelchair at 1.11 m.s-1 for three minutes on a dual-roller ergometer during two laboratory visits (T1 and T2) between 4 and 6 months apart. Shoulder pain was assessed using the Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI). Between visits mean PC-WUSPI scores increased by 5.4 points and varied from - 13.5 to + 20.9 points. Of the eighteen participants, nine (50%) experienced increased shoulder pain, seven (39%) no change in pain, and two (11%) decreased pain. Increasing shoulder pain severity correlated with increased contact angle (r = 0.59, P = 0.010), thorax range of motion (r = 0.60, P = 0.009) and kinetic and kinematic variability. Additionally, increasing shoulder pain was associated with reductions in peak torque (r = -0.56, P = 0.016), peak glenohumeral abduction (r = -0.69, P = 0.002), peak scapular downward rotation (r = -0.68, P = 0.002), and range of motion in glenohumeral flexion/extension and scapular angles. Group comparisons revealed that these biomechanical alterations were exhibited by individuals who experienced increased shoulder pain, whereas, propulsion biomechanics of those with no change/decreased pain remained unaltered. These findings indicate that wheelchair users exhibit a protective short-term wheelchair propulsion biomechanical response to increases in shoulder pain which may temporarily help maintain functional independence.


Assuntos
Cadeiras de Rodas , Fenômenos Biomecânicos , Pré-Escolar , Humanos , Lactente , Amplitude de Movimento Articular , Ombro , Dor de Ombro/etiologia
5.
J Biomech ; 113: 110099, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33142207

RESUMO

The purpose of this study was to investigate whether wheelchair propulsion biomechanics differ between individuals with different magnitudes of shoulder pain. Forty (age 36 ± 11 years) manual wheelchair users propelled their own daily living wheelchair at 1.11 m·s-1 for three minutes on a dual-roller ergometer. Shoulder pain was evaluated using the Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI). Correlation analyses between spatio-temporal, kinetic and upper limb kinematic variables during wheelchair propulsion and PC-WUSPI scores were assessed. Furthermore, kinematic differences between wheelchair users with no or mild shoulder pain (n = 33) and moderate pain (n = 7) were investigated using statistical parametric mapping. Participant mean PC-WUSPI scores were 20.3 ± 26.3 points and varied from zero up to 104 points. No significant correlations were observed between kinetic or spatio-temporal parameters of wheelchair propulsion and shoulder pain. However, lower inter-cycle variability of scapular internal/external rotation was associated with greater levels of shoulder pain (r = 0.35, P = 0.03). Wheelchair users with moderate pain displayed significantly lower scapular kinematic variability compared to those with mild or no pain between 17 and 51% of the push phase for internal rotation, between 31-42% and 77-100% of the push phase for downward rotation and between 28-36% and 53-65% of the push phase for posterior tilt. Lower scapular variability displayed by wheelchair users with moderate shoulder pain may reflect a more uniform distribution of repeated subacromial tissue stress imposed by propulsion. This suggests that lower scapular kinematic variability during propulsion may contribute towards the development of chronic shoulder pain.


Assuntos
Dor de Ombro , Cadeiras de Rodas , Adulto , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade , Escápula , Ombro , Dor de Ombro/etiologia
6.
J Biomech ; 104: 109725, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173030

RESUMO

The purpose of this study was to investigate whether athletic and nonathletic manual wheelchair users (MWU) display differences in kinetic and kinematic variables during daily wheelchair propulsion. Thirty-nine manual wheelchair users (athletic n = 25; nonathletic n = 14) propelled their own daily living wheelchair on a roller ergometer at two submaximal speeds for three minutes (1.11 m s-1 and 1.67 m s-1). A 10 camera Vicon motion capture system (Vicon, Motion Systems Ltd. Oxford, United Kingdom) collected three-dimensional kinematics of the upper limbs and thorax at 200 Hz during the final minute of each propulsion trial. Kinetics, kinematics and kinematic variability were compared between athletic and nonathletic groups. Kinematic differences were investigated using statistical parametric mapping. Athletic MWU performed significantly greater physical activity per week compared to nonathletic MWU (920 ± 601 mins vs 380 ± 147 mins, respectively). However, no significant biomechanical differences between athletic and nonathletic MWU were observed during either propulsion speed. During the 1.11 m s-1 trial wheelchair users displayed a stroke frequency of 53 ± 12 pushes/min and a contact angle of 92.5 ± 16.2°. During the 1.67 m s-1 trial the mean stroke frequency was 64 ± 22 pushes/min and contact angle was 85.4 ± 13.6°. Despite the hand being unconstrained during the recovery phase the magnitude of joint kinematic variability was similar across both glenohumeral and scapulothoracic joints during recovery and push phases. To conclude, although athletic MWU participate in more physical activity per week they adopt similar strategies to propel their daily living wheelchair. Investigations of shoulder pain and dailywheelchair propulsion do not need to distinguish between athletic and nonathletic MWU.


Assuntos
Esportes , Cadeiras de Rodas , Fenômenos Biomecânicos , Humanos , Dor de Ombro , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...