Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(9): 1643-1659.e10, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334231

RESUMO

The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.


Assuntos
Proteínas do Domínio Armadillo , NAD , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , NAD/metabolismo , NAD+ Nucleosidase/metabolismo , Domínios Proteicos
2.
Science ; 371(6525): 190-194, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33414219

RESUMO

There are no approved flaviviral therapies and the development of vaccines against flaviruses has the potential of being undermined by antibody-dependent enhancement (ADE). The flavivirus nonstructural protein 1 (NS1) is a promising vaccine antigen with low ADE risk but has yet to be explored as a broad-spectrum therapeutic antibody target. Here, we provide the structural basis of NS1 antibody cross-reactivity through cocrystallization of the antibody 1G5.3 with NS1 proteins from dengue and Zika viruses. The 1G5.3 antibody blocks multi-flavivirus NS1-mediated cell permeability in disease-relevant cell lines, and therapeutic application of 1G5.3 reduces viremia and improves survival in dengue, Zika, and West Nile virus murine models. Finally, we demonstrate that 1G5.3 protection is independent of effector function, identifying the 1G5.3 epitope as a key site for broad-spectrum antiviral development.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Vírus da Dengue/imunologia , Proteínas não Estruturais Virais/imunologia , Vírus do Nilo Ocidental/imunologia , Zika virus/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Células CHO , Linhagem Celular , Cricetulus , Reações Cruzadas , Dengue/prevenção & controle , Dengue/terapia , Modelos Animais de Doenças , Humanos , Camundongos , Domínios Proteicos , Proteínas não Estruturais Virais/química , Viremia/terapia , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/terapia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/terapia
3.
Cell Rep ; 33(9): 108450, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264611

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition.


Assuntos
Regulação da Expressão Gênica/genética , Histona Desacetilases/metabolismo , Nucleossomos/metabolismo , Humanos , Modelos Moleculares
4.
Nature ; 586(7828): 317-321, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32640464

RESUMO

Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, is a flavin adenine dinucleotide-, thiamine diphosphate- and magnesium-dependent enzyme that catalyses the first step in the biosynthesis of branched-chain amino acids1. It is the target for more than 50 commercial herbicides2. AHAS requires both catalytic and regulatory subunits for maximal activity and functionality. Here we describe structures of the hexadecameric AHAS complexes of Saccharomyces cerevisiae and dodecameric AHAS complexes of Arabidopsis thaliana. We found that the regulatory subunits of these AHAS complexes form a core to which the catalytic subunit dimers are attached, adopting the shape of a Maltese cross. The structures show how the catalytic and regulatory subunits communicate with each other to provide a pathway for activation and for feedback inhibition by branched-chain amino acids. We also show that the AHAS complex of Mycobacterium tuberculosis adopts a similar structure, thus demonstrating that the overall AHAS architecture is conserved across kingdoms.


Assuntos
Acetolactato Sintase/química , Arabidopsis/enzimologia , Saccharomyces cerevisiae/enzimologia , Acetolactato Sintase/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Domínio Catalítico , Ativação Enzimática , Evolução Molecular , Retroalimentação Fisiológica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Valina/metabolismo
5.
Methods Mol Biol ; 2073: 221-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31612445

RESUMO

Cryo-electron microscopy has become popular as the penultimate step on the road to structure determination for many proteins and macromolecular assemblies. The process of obtaining high-resolution images of a purified biomolecular complex in an electron microscope often follows a long, and in many cases exhaustive screening process in which many iterative rounds of protein purification are employed and the sample preparation procedure progressively re-evaluated in order to improve the distribution of particles visualized under the electron microscope, and thus maximize the opportunity for high-resolution structure determination. Typically, negative stain electron microscopy is employed to obtain a preliminary assessment of the sample quality, followed by cryo-EM which first requires the identification of optimal vitrification conditions. The original methods for frozen-hydrated specimen preparation developed over 40 years ago still enjoy widespread use today, although recent developments have set the scene for a future where more systematic and high-throughput approaches to the preparation of vitrified biomolecular complexes may be routinely employed. Here we summarize current approaches and ongoing innovations for the preparation of frozen-hydrated single particle specimens for cryo-EM, highlighting some of the commonly encountered problems and approaches that may help overcome these.


Assuntos
Proteínas/química , Microscopia Crioeletrônica , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Proteínas/ultraestrutura
6.
Nat Commun ; 10(1): 1952, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028251

RESUMO

ABC toxins are pore-forming virulence factors produced by pathogenic bacteria. YenTcA is the pore-forming and membrane binding A subunit of the ABC toxin YenTc, produced by the insect pathogen Yersinia entomophaga. Here we present cryo-EM structures of YenTcA, purified from the native source. The soluble pre-pore structure, determined at an average resolution of 4.4 Å, reveals a pentameric assembly that in contrast to other characterised ABC toxins is formed by two TcA-like proteins (YenA1 and YenA2) and decorated by two endochitinases (Chi1 and Chi2). We also identify conformational changes that accompany membrane pore formation by visualising YenTcA inserted into liposomes. A clear outward rotation of the Chi1 subunits allows for access of the protruding translocation pore to the membrane. Our results highlight structural and functional diversity within the ABC toxin subfamily, explaining how different ABC toxins are capable of recognising diverse hosts.


Assuntos
Toxinas Biológicas/metabolismo , Yersinia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Lipossomos/metabolismo , Toxinas Biológicas/genética , Yersinia/genética
7.
ACS Nano ; 11(4): 3476-3484, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28198180

RESUMO

Understanding capsid assembly following recombinant expression of viral structural proteins is critical to the design and modification of virus-like nanoparticles for biomedical and nanotechnology applications. Here, we use plant-based transient expression of the Bluetongue virus (BTV) structural proteins, VP3 and VP7, to obtain high yields of empty and green fluorescent protein (GFP)-encapsidating core-like particles (CLPs) from leaves. Single-particle cryo-electron microscopy of both types of particles revealed considerable differences in CLP structure compared to the crystal structure of infection-derived CLPs; in contrast, the two recombinant CLPs have an identical external structure. Using this insight, we exploited the unencumbered pore at the 5-fold axis of symmetry and the absence of encapsidated RNA to label the interior of empty CLPs with a fluorescent bioconjugate. CLPs containing 120 GFP molecules and those containing approximately 150 dye molecules were both shown to bind human integrin via a naturally occurring Arg-Gly-Asp motif found on an exposed loop of the VP7 trimeric spike. Furthermore, fluorescently labeled CLPs were shown to interact with a cell line overexpressing the surface receptor. Thus, BTV CLPs present themselves as a useful tool in targeted cargo delivery. These results highlight the importance of detailed structural analysis of VNPs in validating their molecular organization and the value of such analyses in aiding their design and further modification.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nicotiana/química , Proteínas de Plantas/química , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Vírus Bluetongue/química , Clonagem Molecular , Portadores de Fármacos/química , Humanos , Integrinas/química , Células MCF-7 , Nanotecnologia , Folhas de Planta/química , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação
8.
Protein Sci ; 25(8): 1472-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27144666

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex remodels the genome in the context of both gene transcription and DNA damage repair. It is essential for normal development and is distributed across multiple tissues in organisms ranging from mammals to nematode worms. In common with other chromatin-remodeling complexes, however, its molecular mechanism of action is not well understood and only limited structural information is available to show how the complex is assembled. As a step towards understanding the structure of the NuRD complex, we have characterized the interaction between two subunits: the metastasis associated protein MTA1 and the histone-binding protein RBBP4. We show that MTA1 can bind to two molecules of RBBP4 and present negative stain electron microscopy and chemical crosslinking data that allow us to build a low-resolution model of an MTA1-(RBBP4)2 subcomplex. These data build on our understanding of NuRD complex structure and move us closer towards an understanding of the biochemical basis for the activity of this complex.


Assuntos
Histona Desacetilases/química , Nucleossomos/química , Subunidades Proteicas/química , Proteínas Repressoras/química , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 7 de Ligação ao Retinoblastoma/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sequência Conservada , Reagentes de Ligações Cruzadas/química , Expressão Gênica , Células HEK293 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Nucleossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/genética , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Alinhamento de Sequência , Termodinâmica , Transativadores , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...