Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38802684

RESUMO

The ε4 allele of the APOE gene heightens the risk of late onset Alzheimer's disease. ε4 carriers, may exhibit cognitive and neural changes early on. Given the known memory-enhancing effects of physical exercise, particularly through hippocampal plasticity via endocannabinoid signaling, here we aimed to test whether a single session of physical exercise may benefit memory and underlying neurophysiological processes in young ε3 carriers (ε3/ε4 heterozygotes, risk group) compared with a matched control group (homozygotes for ε3). Participants underwent fMRI while learning picture sequences, followed by cycling or rest before a memory test. Blood samples measured endocannabinoid levels. At the behavioral level, the risk group exhibited poorer associative memory performance, regardless of the exercising condition. At the brain level, the risk group showed increased medial temporal lobe activity during memory retrieval irrespective of exercise (suggesting neural compensatory effects even at baseline), whereas, in the control group, such increase was only detectable after physical exercise. Critically, an exercise-related endocannabinoid increase correlated with task-related hippocampal activation in the control group only. In conclusion, healthy young individuals carrying the ε4 allele may present suboptimal associative memory performance (when compared with homozygote ε3 carriers), together with reduced plasticity (and functional over-compensation) within medial temporal structures.


Assuntos
Doença de Alzheimer , Exercício Físico , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Exercício Físico/fisiologia , Adulto , Adulto Jovem , Memória/fisiologia , Endocanabinoides/genética , Predisposição Genética para Doença , Aprendizagem por Associação/fisiologia , Apolipoproteína E4/genética , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Heterozigoto
2.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L756-L764, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874657

RESUMO

Inefficient ventilatory response during cardiopulmonary exercise testing (CPET) has been suggested as a cause of post-COVID-19 dyspnea. It has been described in hospitalized patients (HOSP) with lung parenchymal sequelae but also after mild infection in ambulatory patients (AMBU). We hypothesize that AMBU and HOSP have different ventilatory responses to exercise, due to different etiologies. We analyzed CPET realized between July 2020 and May 2022 of patients with persisting respiratory symptoms 3 mo after COVID-19. Chest computed tomography (CT) scan, pulmonary function tests, quality of life, and respiratory questionnaires were collected. CPET data were specifically explored as a function of ventilation (V̇e) and time. Seventy-nine consecutive patients were included (42 AMBU and 37 HOSP, median: 54 [44-60] yr old, 57% female). Patients were hospitalized for a median of 20 [8-34] days, with pneumonia (41%) or acute respiratory distress syndrome (ARDS; 30%). Among HOSP, 12(32%) patients had abnormal values for spirometry and 18(51%) for carbon monoxide diffusing capacity (P < 0.001). CPET showed no differences between AMBU and HOSP in peak absolute O2 uptake (V̇o2) (1.59 [1.22-2.11] mL·min-1; P = 0.65). Tidal volume (VT) as a function of V̇e, was lower in AMBU than in HOSP (P < 0.01) toward the end of exercise. The slope of the V̇e-CO2 production was higher than normal in both groups (30.9 [26.1-34.3]; P = 0.96). In conclusion, the severity of COVID-19 did not influence the exercise capacity, but AMBU demonstrated a less efficient ventilatory response to exercise as compared with HOSP. CPET with exploration of data as a function of V̇e and throughout the exercise better unveil ventilatory inefficiency.NEW & NOTEWORTHY We evaluated the exercise ventilatory response in patients with persisting dyspnea after severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. We found that despite similar peak power and peak absolute O2 uptake, tidal volume as a function of ventilation was lower in ambulatory than in hospitalized patients toward the end of exercise, reflecting ventilatory inefficiency. We call for evaluation of minute ventilation with the exploration of data throughout the exercise and not only peak data to better unveil ventilatory inefficiency.


Assuntos
COVID-19 , Qualidade de Vida , Humanos , Feminino , Masculino , COVID-19/complicações , SARS-CoV-2 , Teste de Esforço/efeitos adversos , Teste de Esforço/métodos , Dispneia/etiologia , Respiração , Tolerância ao Exercício/fisiologia , Consumo de Oxigênio
3.
Eur J Appl Physiol ; 121(11): 3173-3187, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390402

RESUMO

PURPOSE: We tested the vagal withdrawal concept for heart rate (HR) and cardiac output (CO) kinetics upon moderate exercise onset, by analysing the effects of vagal blockade on cardiovascular kinetics in humans. We hypothesized that, under atropine, the φ1 amplitude (A1) for HR would reduce to nil, whereas the A1 for CO would still be positive, due to the sudden increase in stroke volume (SV) at exercise onset. METHODS: On nine young non-smoking men, during 0-80 W exercise transients of 5-min duration on the cycle ergometer, preceded by 5-min rest, we continuously recorded HR, CO, SV and oxygen uptake ([Formula: see text]O2) upright and supine, in control condition and after full vagal blockade with atropine. Kinetics were analysed with the double exponential model, wherein we computed the amplitudes (A) and time constants (τ) of phase 1 (φ1) and phase 2 (φ2). RESULTS: In atropine versus control, A1 for HR was strongly reduced and fell to 0 bpm in seven out of nine subjects for HR was practically suppressed by atropine in them. The A1 for CO was lower in atropine, but not reduced to nil. Thus, SV only determined A1 for CO in atropine. A2 did not differ between control and atropine. No effect on τ1 and τ2 was found. These patterns were independent of posture. CONCLUSION: The results are fully compatible with the tested hypothesis. They provide the first direct demonstration that vagal blockade, while suppressing HR φ1, did not affect φ1 of CO.


Assuntos
Débito Cardíaco/fisiologia , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Bloqueio Nervoso/métodos , Consumo de Oxigênio/fisiologia , Nervo Vago/fisiologia , Humanos , Masculino , Adulto Jovem
4.
Sci Rep ; 11(1): 14371, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257382

RESUMO

Regular physical exercise enhances memory functions, synaptic plasticity in the hippocampus, and brain derived neurotrophic factor (BDNF) levels. Likewise, short periods of exercise, or acute exercise, benefit hippocampal plasticity in rodents, via increased endocannabinoids (especially anandamide, AEA) and BDNF release. Yet, it remains unknown whether acute exercise has similar effects on BDNF and AEA levels in humans, with parallel influences on memory performance. Here we combined blood biomarkers, behavioral, and fMRI measurements to assess the impact of a single session of physical exercise on associative memory and underlying neurophysiological mechanisms in healthy male volunteers. For each participant, memory was tested after three conditions: rest, moderate or high intensity exercise. A long-term memory retest took place 3 months later. At both test and retest, memory performance after moderate intensity exercise was increased compared to rest. Memory after moderate intensity exercise correlated with exercise-induced increases in both AEA and BNDF levels: while AEA was associated with hippocampal activity during memory recall, BDNF enhanced hippocampal memory representations and long-term performance. These findings demonstrate that acute moderate intensity exercise benefits consolidation of hippocampal memory representations, and that endocannabinoids and BNDF signaling may contribute to the synergic modulation of underlying neural plasticity mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Endocanabinoides/metabolismo , Exercício Físico , Hipocampo/fisiologia , Memória , Adolescente , Adulto , Ácidos Araquidônicos/biossíntese , Comportamento , Biomarcadores/metabolismo , Endocanabinoides/biossíntese , Terapia por Exercício , Frequência Cardíaca , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Plasticidade Neuronal , Alcamidas Poli-Insaturadas , Adulto Jovem
5.
Front Med (Lausanne) ; 7: 539707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195292

RESUMO

Intravenous treprostinil administration by an implantable pump is an attractive option for pulmonary arterial hypertension (PAH) treatment and is the subject of recent publications. Short-term studies are promising, but there is still a lack of long-term prospective data. We analyzed the treprostinil flow rate administered by the Lenus Pro® implantable pump in 2 patients suffering from PAH during follow-up times of respectively 4.2 and 3 years. The flow rate delivered by the pumps in these 2 patients exceeded the manufacturer admitted margin of error within 2 years and continued to increase to reach, respectively, 158 and 120% of the expected flow rate at the end of the follow up. In one case, the implantable pump had to be removed for this reason. The ex-vivo flow rate of the withdrawn pump determined in the laboratory reached 173% of the predicted value. This correlated with the in-vivo measurement, which suggests a continuous flow increase even after pump removal and without treprostinil use. Spontaneous flow increase from such an implantable pump is a potentially major pitfall, which needs to be identified and actively managed by the responsible clinicians.

6.
Sci Rep ; 10(1): 15322, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948800

RESUMO

Acute physical exercise improves memory functions by increasing neural plasticity in the hippocampus. In animals, a single session of physical exercise has been shown to boost anandamide (AEA), an endocannabinoid known to promote hippocampal plasticity. Hippocampal neuronal networks encode episodic memory representations, including the temporal organization of elements, and can thus benefit motor sequence learning. While previous work established that acute physical exercise has positive effects on declarative memory linked to hippocampal plasticity mechanisms, its influence on memory for motor sequences, and especially on neural mechanisms underlying possible effects, has been less investigated. Here we studied the impact of acute physical exercise on motor sequence learning, and its underlying neurophysiological mechanisms in humans, using a cross-over randomized within-subjects design. We measured behavior, fMRI activity, and circulating AEA levels in fifteen healthy participants while they performed a serial reaction time task before and after a short period of exercise (moderate or high intensity) or rest. We show that exercise enhanced motor sequence memory, significantly for high intensity exercise and tending towards significance for moderate intensity exercise. This enhancement correlated with AEA increase, and dovetailed with local increases in caudate nucleus and hippocampus activity. These findings demonstrate that acute physical exercise promotes sequence learning, thus attesting the overarching benefit of exercise to hippocampus-related memory functions.


Assuntos
Encéfalo/fisiologia , Exercício Físico/fisiologia , Memória/fisiologia , Adolescente , Adulto , Ácidos Araquidônicos/sangue , Encéfalo/diagnóstico por imagem , Endocanabinoides/sangue , Exercício Físico/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Experimentação Humana não Terapêutica , Alcamidas Poli-Insaturadas/sangue , Distribuição Aleatória , Tempo de Reação , Adulto Jovem
7.
Int J Sports Med ; 41(4): 209-218, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31958874

RESUMO

We hypothesised that vagal withdrawal and increased venous return interact in determining the rapid cardiac output (CO) response (phase I) at exercise onset. We used lower body negative pressure (LBNP) to increase blood distribution to the heart by muscle pump action and reduce resting vagal activity. We expected a larger increase in stroke volume (SV) and smaller for heart rate (HR) at progressively stronger LBNP levels, therefore CO response would remain unchanged. To this aim ten young, healthy males performed a 50 W exercise in supine position at 0 (Control), -15, -30 and -45 mmHg LBNP exposure. On single beat basis, we measured HR, SV, and CO. Oxygen uptake was measured breath-by-breath. Phase I response amplitudes were obtained applying an exponential model. LBNP increased SV response amplitude threefold from Control to -45 mmHg. HR response amplitude tended to decrease and prevented changes in CO response. The rapid response of CO explained that of oxygen uptake. The rapid SV kinetics at exercise onset is compatible with an increased venous return, whereas the vagal withdrawal conjecture cannot be dismissed for HR. The rapid CO response may indeed be the result of two independent yet parallel mechanisms, one acting on SV, the other on HR.


Assuntos
Débito Cardíaco/fisiologia , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Pressão Negativa da Região Corporal Inferior , Volume Sistólico/fisiologia , Adulto , Pressão Sanguínea/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Nervo Vago/fisiologia , Resistência Vascular/fisiologia , Adulto Jovem
8.
J Appl Physiol (1985) ; 125(6): 1804-1811, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307822

RESUMO

We performed the first analysis of heart rate variability (HRV) at rest and during exercise under full autonomic blockade on the same subjects, to test the conjecture that vagal tone withdrawal occurs at exercise onset. We hypothesized that between rest and exercise there would be 1) no differences in total power (PTOT) under parasympathetic blockade, 2) a PTOT fall under ß1-sympathetic blockade, and 3) no differences in PTOT under blockade of both autonomic nervous system branches. Seven men [24 (3) yr, mean (SD)] performed 5-min cycling (80 W) supine, preceded by 5-min rest during control and with administration of atropine, metoprolol, and atropine + metoprolol (double blockade). Heart rate and arterial blood pressure were continuously recorded. HRV and blood pressure variability were determined by power spectral analysis, and baroreflex sensitivity was determined by the sequence method. At rest, PTOT and the powers of low- and high-frequency components of HRV (LF and HF, respectively) were dramatically decreased with atropine and double blockade compared with control and metoprolol, with no effects on LF-to-HF ratio and on the normalized LF (LFnu) and HF (HFnu). During exercise, patterns were the same as at rest. Comparing exercise with rest, PTOT varied as hypothesized. For systolic and diastolic blood pressure, resting PTOT was the same in all conditions. During exercise, in all conditions, PTOT was lower than in control. Baroreflex sensitivity decreased under atropine and double blockade at rest and under control and metoprolol during exercise. The results support the hypothesis that vagal suppression determined disappearance of HRV during exercise.NEW & NOTEWORTHY This study provides the first demonstration, by systematic analysis of heart rate variability at rest and during exercise under full autonomic blockade on the same subjects, that suppression of vagal activity is responsible for the disappearance of spontaneous heart rate variability during exercise. This finding supports previous hypotheses on the role of vagal withdrawal in the control of the rapid cardiovascular response at exercise onset.

9.
Neurophotonics ; 4(4): 041404, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28785600

RESUMO

Regular physical exercise has been shown to benefit neurocognitive functions, especially enhancing neurogenesis in the hippocampus. However, the effects of a single exercise session on cognitive functions are controversial. To address this issue, we measured hemodynamic changes in the brain during physical exercise using near-infrared spectroscopy (NIRS) and investigated related effects on memory consolidation processes. Healthy young participants underwent two experimental visits. During each visit, they performed an associative memory task in which they first encoded a series of pictures, then spent 30-min exercising or resting, and finally were asked to recall the picture associations. We used NIRS to track changes in oxygenated hemoglobin concentration over the prefrontal cortex during exercise and rest. To characterize local tissue oxygenation and perfusion, we focused on low frequency oscillations in NIRS, also called vasomotion. We report a significant increase in associative memory consolidation after exercise, as compared to after rest, along with an overall increase in vasomotion. Additionally, performance improvement after exercise correlated positively with power in the neurogenic component (0.02 to 0.04 Hz) and negatively with power in the endothelial component (0.003 to 0.02 Hz). Overall, these results suggest that changes in vasomotion over the prefrontal cortex during exercise may promote memory consolidation processes.

10.
Eur J Appl Physiol ; 117(4): 619-630, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28238048

RESUMO

PURPOSE: The dynamics of the postulated phenomenon of exercise baroreflex resetting is poorly understood, but can be investigated using closed-loop procedures. To shed light on some mechanisms and temporal relationships participating in the resetting process, we studied the time course of the relationship between the R-R interval (RRi) and arterial pressure with a closed-loop approach. METHODS: On ten young volunteers at rest and during light exercise in supine and upright position, we continuously determined, on single-beat basis, RRi (electrocardiography), and arterial pressure (non-invasive finger pressure cuff). From pulse pressure profiles, we determined cardiac output (CO) by Modelflow, computed mean arterial pressure (MAP), and calculated total peripheral resistance (TPR). RESULTS: At exercise start, RRi was lower than in quiet rest. As exercise started, MAP fell to a minimum (MAPm) of 72.8 ± 9.6 mmHg upright and 73.9 ± 6.2 supine, while RRi dropped. The initial RRi versus MAP relationship was linear, with flatter slope than resting baroreflex sensitivity, in both postures. TPR fell and CO increased. After MAPm, RRi and MAP varied in opposite direction toward exercise steady state, with further CO increase. CONCLUSION: These results suggest that, initially, the MAP fall was corrected by a RRi reduction along a baroreflex curve, with lower sensitivity than at rest, but eventually in the same pressure range as at rest. After attainment of MAPm, a second phase started, where the postulated baroreflex resetting might have occurred. In conclusion, the change in baroreflex sensitivity and the resetting process are distinct phenomena, under different control systems.


Assuntos
Barorreflexo , Pressão Sanguínea , Exercício Físico/fisiologia , Adulto , Débito Cardíaco , Feminino , Humanos , Masculino , Postura
11.
Respir Physiol Neurobiol ; 235: 45-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27721037

RESUMO

INTRODUCTION: We tested the hypothesis that the alveolar gas composition at the transition between the steady phase II (φ2) and the dynamic phase III (φ3) of the cardiovascular response to apnoea may lay on the physiological breaking point curve (Lin et al., 1974). METHODS: Twelve elite divers performed maximal and φ2-interrupted apnoeas, in air and pure oxygen. We recorded beat-by-beat arterial blood pressure and heart rate; we measured alveolar oxygen and carbon dioxide pressures (PAO2 and PACO2, respectively) before and after apnoeas; we calculated the PACO2 difference between the end and the beginning of apnoeas (ΔPACO2). RESULTS: Cardiovascular responses to apnoea were similar compared to previous studies. PAO2 and PACO2 at the end of φ2-interrupted apnoeas, corresponded to those reported at the physiological breaking point. For maximal apnoeas, PACO2 was less than reported by Lin et al. (1974). ΔPACO2 was higher in oxygen than in air. CONCLUSIONS: The transition between φ2 and φ3 corresponds indeed to the physiological breaking point. We attribute this transition to ΔPACO2, rather than the absolute PACO2 values, both in air and oxygen apnoeas.


Assuntos
Ar , Apneia/metabolismo , Oxigênio/metabolismo , Alvéolos Pulmonares/metabolismo , Adulto , Atletas , Pressão Sanguínea/fisiologia , Dióxido de Carbono/metabolismo , Mergulho/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pressão
12.
Biomed Res Int ; 2016: 6050193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990432

RESUMO

Purpose. Cardiac output (CO) is a cornerstone parameter in precapillary pulmonary hypertension (PH). The Modelflow (MF) method offers a reliable noninvasive determination of its beat-by-beat changes. So MF allows exploration of CO adjustment with the best temporal resolution. Methods. Fifteen subjects (5 PH patients, 10 healthy controls) performed a submaximal supine exercise on a cycle ergometer after 5 min of rest. CO was continuously determined by MF (COMF). Kinetics of heart rate (HR), stroke volume (SV), and CO were determined with 3 monoexponential models. Results. In PH patients, we observed a sudden and transitory drop of SV upon exercise onset. This implied a transitory drop of CO whose adjustment to a new steady state depended on HR increase. The kinetics of HR and CO for PH patients was slower than that of controls for all models and for SV in model 1. SV kinetics was faster for PH patients in models 2 and 3. Conclusion. This is the first description of beat-by-beat cardiovascular adjustments upon exercise onset in PH. The kinetics of HR and CO appeared slower than those of healthy controls and there was a transitory drop of CO upon exercise onset in PH due to a sudden drop of SV.


Assuntos
Débito Cardíaco , Teste de Esforço/métodos , Exercício Físico , Hipertensão Pulmonar/fisiopatologia , Pressão Propulsora Pulmonar , Volume Sistólico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Med Sci Sports Exerc ; 48(5): 811-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26694849

RESUMO

INTRODUCTION: Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity. METHOD: We simultaneously assessed the ATP synthesis and O2 fluxes with P-magnetic resonance spectroscopy and pulmonary gas exchange measurements in seven endurance-trained (ET, V˙O2max: 67 ± 8 mL·min⁻¹·kg⁻¹) and seven recreationally active (RA, V˙O2max: 43 ± 7 mL·min⁻¹·kg⁻¹) subjects during 6 min of dynamic moderate-intensity knee extension. RESULTS: The ATP cost of dynamic contraction was not significantly different between ET and RA (P > 0.05). Similarly, end-exercise O2 consumption was not significantly different between groups (ET: 848 ± 155 mL·min⁻¹ and RA: 760 ± 131 mL·min⁻¹, P > 0.05). During the recovery period, the PCr offset time constant was significantly faster in ET compared with RA (ET: 32 ± 8 s and RA: 43 ± 10 s, P < 0.05), thus indicating an increased mitochondrial capacity for ATP synthesis in the quadriceps of ET. In contrast, the estimated mitochondrial efficiency during exercise was not significantly different (P/O, ET: 2.0 ± 1.0 and RA: 1.8 ± 0.4, P > 0.05). Consequently, the higher mitochondrial capacity for ATP synthesis in ET likely originated from an elevated mitochondrial volume density, mitochondria-specific respiratory capacity, and/or slower postexercise inactivation of oxidative phosphorylation by the parallel activation mechanism. CONCLUSION: Together, these findings reveal that 1) mitochondrial and contractile efficiencies are unaltered by several years of endurance training in young adults, and 2) the training-induced improvement in mitochondrial energetic capacity appears to be independent from changes in mitochondrial coupling.


Assuntos
Mitocôndrias Musculares/fisiologia , Contração Muscular/fisiologia , Resistência Física/fisiologia , Músculo Quadríceps/fisiologia , Trifosfato de Adenosina/fisiologia , Adulto , Exercício Físico/fisiologia , Tolerância ao Exercício , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Troca Gasosa Pulmonar
14.
Respir Physiol Neurobiol ; 219: 1-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26253502

RESUMO

PURPOSE: We hypothesized that the third dynamic phase (ϕ3) of the cardiovascular response to apnoea requires attainment of the physiological breaking point, so that the duration of the second steady phase (ϕ2) of the classical cardiovascular response to apnoea, though appearing in both air and oxygen, is longer in oxygen. METHODS: Nineteen divers performed maximal apnoeas in air and oxygen. We measured beat-by-beat arterial pressure, heart rate (fH), stroke volume (SV), cardiac output (Q˙). RESULTS: The fH, SV and Q˙ changes during apnoea followed the same patterns in oxygen as in air. Duration of steady ϕ2 was 105 ± 37 and 185 ± 36 s, in air and oxygen (p<0.05), respectively. At end of apnoea, arterial oxygen saturation was 1.00 ± 0.00 in oxygen and 0.75 ± 0.10 in air. CONCLUSIONS: The results support the tested hypothesis. Lack of hypoxaemia during oxygen apnoeas suggests that, if chemoreflexes determine ϕ3, the increase in CO2 stores might play a central role in eliciting their activation.


Assuntos
Apneia/fisiopatologia , Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Mergulho/fisiologia , Frequência Cardíaca/fisiologia , Oxigênio/administração & dosagem , Adulto , Ar , Gasometria , Determinação da Pressão Arterial , Feminino , Humanos , Masculino , Oxigênio/sangue , Respiração
15.
PLoS One ; 10(7): e0134221, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226280

RESUMO

BACKGROUND: Cardiac output (CO) is a major diagnostic and prognostic factor in pre-capillary pulmonary hypertension (PH). Reference methods for CO determination, like thermodilution (TD), require invasive procedures and allow only steady-state measurements. The Modelflow (MF) method is an appealing technique for this purpose as it allows non-invasive and beat-by-beat determination of CO. METHODS: We aimed to compare CO values obtained simultaneously from non-invasive pulse wave analysis by MF (COMF) and by TD (COTD) to determine its precision and accuracy in pre-capillary PH. The study was performed on 50 patients with pulmonary arterial hypertension (PAH) or chronic thrombo-embolic PH (CTEPH). CO was determined at rest in all patients (n = 50) and during nitric oxide vasoreactivity test, fluid challenge or exercise (n = 48). RESULTS: Baseline COMF and COTD were 6.18 ± 1.95 and 5.46 ± 1.95 L·min-1, respectively. Accuracy and precision were 0.72 and 1.04 L·min-1, respectively. Limits of agreement (LoA) ranged from -1.32 to 2.76 L·min-1. Percentage error (PE) was ±35.7%. Overall sensitivity and specificity of COMF for directional change were 95.2% and 82.4%, (n = 48) and 93.3% and 100% for directional changes during exercise (n = 16), respectively. After application of a correction factor (1.17 ± 0.25), neither proportional nor fixed bias was found for subsequent CO determination (n = 48). Accuracy was -0.03 L·min-1 and precision 0.61 L·min-1. LoA ranged from -1.23 to 1.17 L·min-1 and PE was ±19.8%. CONCLUSIONS: After correction against a reference method, MF is precise and accurate enough to determine absolute values and beat-by-beat relative changes of CO in pre-capillary PH.


Assuntos
Débito Cardíaco/fisiologia , Hipertensão Pulmonar/fisiopatologia , Cateterismo Cardíaco/métodos , Teste de Esforço , Feminino , Hemodinâmica/fisiologia , Humanos , Hipertensão Pulmonar/diagnóstico , Masculino , Pessoa de Meia-Idade , Termodiluição
16.
Am J Physiol Regul Integr Comp Physiol ; 308(8): R724-33, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25695290

RESUMO

Exercise efficiency is an important determinant of exercise capacity. However, little is known about the physiological factors that can modulate muscle efficiency during exercise. We examined whether improved O2 availability would 1) impair mitochondrial efficiency and shift the energy production toward aerobic ATP synthesis and 2) reduce the ATP cost of dynamic contraction owing to an improved neuromuscular efficiency, such that 3) whole body O2 cost would remain unchanged. We used (31)P-magnetic resonance spectroscopy, surface electromyography, and pulmonary O2 consumption (V̇o2p) measurements in eight active subjects during 6 min of dynamic knee-extension exercise under different fractions of inspired O2 (FiO2 , 0.21 in normoxia and 1.0 in hyperoxia). V̇o2p (755 ± 111 ml/min in normoxia and 799 ± 188 ml/min in hyperoxia, P > 0.05) and O2 cost (P > 0.05) were not significantly different between normoxia and hyperoxia. In contrast, the total ATP synthesis rate and the ATP cost of dynamic contraction were significantly lower in hyperoxia than normoxia (P < 0.05). As a result, the ratio of the rate of oxidative ATP synthesis from the quadriceps to V̇o2p was lower in hyperoxia than normoxia but did not reach statistical significance (16 ± 3 mM/ml in normoxia and 12 ± 5 mM/ml in hyperoxia, P = 0.07). Together, these findings reveal dynamic and independent regulations of mitochondrial and contractile efficiency as a consequence of O2 availability in young active individuals. Furthermore, muscle efficiency appears to be already optimized in normoxia and is unlikely to contribute to the well-established improvement in exercise capacity induced by hyperoxia.


Assuntos
Metabolismo Energético , Exercício Físico , Hiperóxia/fisiopatologia , Contração Isométrica , Pulmão/fisiopatologia , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio , Músculo Quadríceps/fisiopatologia , Trifosfato de Adenosina/metabolismo , Adulto , Ciclismo , Eletromiografia , Tolerância ao Exercício , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hiperóxia/metabolismo , Pulmão/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Fadiga Muscular , Força Muscular , Músculo Quadríceps/metabolismo , Fatores de Tempo
17.
Eur J Appl Physiol ; 115(1): 119-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25216993

RESUMO

PURPOSE: Cardiovascular responses during resting apnoea include three phases: (1) a dynamic phase of rapid changes, lasting at most 30 s; (2) a subsequent steady phase; and (3) a further dynamic phase, with a continuous decrease in heart rate (HR) and an increase in blood pressure. The interpretation was that the end of the steady phase corresponds to the physiological apnoea breaking point. This being so, during exercise apnoeas, the steady phase would be shorter, and the rate of cardiovascular changes in the subsequent unsteady phase would be faster than at rest. METHODS: To test these hypotheses, we measured beat-by-beat systolic (SBP), diastolic, and mean blood pressures (MBP), HR, and stroke volume (SV) in six divers during dry resting (duration 239.4 ± 51.6 s) and exercise (30 W on cycle ergometer, duration 88.2 ± 20.9 s) maximal apnoeas, and we computed cardiac output ([Formula: see text]) and total peripheral resistance (TPR). RESULTS: Compared to control, at the beginning of resting (R1) and exercising (E1) apnoeas, SBP and MBP decreased and HR increased. SV and [Formula: see text] fell, so that TPR remained unchanged. At rest, HR, SV, [Formula: see text], and SBP were stable during the subsequent phase; this steady phase was missing in exercise apnoeas. Subsequently, at rest (R3) and at exercise (E2), HR decreased and SBP increased continuously. SV returned to control values. Since [Formula: see text] remained unchanged, TPR grew. CONCLUSIONS: The lack of steady phase during exercise apnoeas suggests that the conditions determining R3 were already attained at the end of E1. This being so, E2 would correspond to R3.


Assuntos
Pressão Sanguínea , Suspensão da Respiração , Exercício Físico/fisiologia , Frequência Cardíaca , Adulto , Atletas , Mergulho/fisiologia , Humanos , Masculino
18.
Eur J Appl Physiol ; 115(3): 471-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25361617

RESUMO

This study investigated the effects of acute hypoxia on spinal reflexes and soleus muscle function after a sustained contraction of the plantar flexors at 40% of maximal voluntary isometric contraction (MVC). Fifteen males (age 25.3 ± 0.9 year) performed the fatigue task at two different inspired O2 fractions (FiO2 = 0.21/0.11) in a randomized and single-blind fashion. Before, at task failure and after 6, 12 and 18 min of passive recovery, the Hoffman-reflex (H max) and M-wave (M max) were recorded at rest and voluntary activation (VA), surface electromyogram (RMSmax), M-wave (M sup) and V-wave (V sup) were recorded during MVC. Normalized H-reflex (H max/M max) was significantly depressed pre-exercise in hypoxia compared with normoxia (0.31 ± 0.08 and 0.36 ± 0.08, respectively, P < 0.05). Hypoxia did not affect time to task failure (mean time of 453.9 ± 32.0 s) and MVC decrease at task failure (-18% in normoxia vs. -16% in hypoxia). At task failure, VA (-8%), RMSmax/M sup (-11%), H max/M max (-27%) and V sup/M sup (-37%) decreased (P < 0.05), but with no FiO2 effect. H max/M max restored significantly throughout recovery in hypoxia but not in normoxia, while V sup/M sup restored significantly during recovery in normoxia but not in hypoxia (P < 0.05). Collectively, these findings indicate that central adaptations resulting from sustained submaximal fatiguing contraction were not different in hypoxia and normoxia at task failure. However, the FiO2-induced differences in spinal loop properties pre-exercise and throughout recovery suggest possible specific mediation by the hypoxic-sensitive group III and IV muscle afferents, supraspinal regulation mechanisms being mainly involved in hypoxia while spinal ones may be predominant in normoxia.


Assuntos
Exercício Físico , Hipóxia/fisiopatologia , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Medula Espinal/fisiologia , Adulto , Humanos , Masculino , Contração Muscular , Fadiga Muscular , Reflexo
19.
Eur J Appl Physiol ; 114(9): 1983-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24920551

RESUMO

INTRODUCTION: Interpolation methods circumvent poor time resolution of breath-by-breath oxygen uptake (VO2) kinetics at exercise onset. We report an interpolation-free approach to the improvement of poor time resolution in the analysis of VO2 kinetics. METHODS: Noiseless and noisy (10% Gaussian noise) synthetic data were generated by Monte Carlo method from pre-selected parameters (Exact Parameters). Each data set comprised 10 (VO2)-on transitions with noisy breath distribution within a physiological range. Transitions were superposed (no interpolation, None), then analysed by bi-exponential model. Fitted model parameters were compared with those from interpolation methods (average transition after Linear or Step 1-s interpolations), applied on the same data. Experimental data during cycling were also analysed. The 95% confidence interval around a line of parameters' equality was computed to analyse agreement between exact parameters and corresponding parameters of fitted functions. RESULTS: The line of parameters' equality stayed within confidence intervals for noiseless synthetic parameters with None, unlike Step and Linear, indicating that None reproduced Exact Parameters. Noise addition reduced differences among pre-treatment procedures. Experimental data provided lower phase I time constants with None than with Step. CONCLUSION: In conclusion, None revealed better precision and accuracy than Step and Linear, especially when phenomena characterized by time constants of <30 s are to be analysed. Therefore, we endorse the utilization of None to improve the quality of breath-by-breath [Formula: see text] data during exercise transients, especially when a double exponential model is applied and phase I is accounted for.


Assuntos
Algoritmos , Teste de Esforço/métodos , Consumo de Oxigênio , Adulto , Interpretação Estatística de Dados , Humanos , Respiração
20.
Appl Physiol Nutr Metab ; 38(6): 673-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23724886

RESUMO

During the reambulation procedure after 35-day head-down tilt bed rest (HDTBR) for 9 men, we recorded for the first time heart rate (HR; with electrocardiogram) and arterial pressure profiles (fingertip plethysmography) for 5 min in HDTBR and horizontal (SUP) positions, followed by 12 min in standing position, during which 4 subjects fainted (intolerant, INT) and were laid horizontal again (Recovery). We computed: mean arterial pressure (P̄; pressure profiles integral mean), stroke volume (SV; obtained with Modelflow method), and cardiac output (Q̇; SV × HR). All cardiovascular data remained stable in HDTBR and SUP for both groups (EXP). Taking the upright posture, EXP showed a decrease in SV and an increase in HR, becoming significantly different from SUP within 1 min. Further evolution of these parameters kept Q̇ stable in both groups until the second minute of standing. Afterward, in INT, P̄ precipitated without further HR increases: SV stopped being corrected and Q̇ reached 2.9 ± 0.4 L·min(-1) at the last 15 s of standing. Sudden drop in P̄ allowed identification of a low-pressure threshold in INT (70.7 ± 12.9 mm Hg), after which syncope occurred within 80 s. During Recovery, baroreflex curves showed a flat phase (P̄ increase, HR stable), followed by a steep phase (P̄ increased, HR decreased, starting when P̄ was 84.5 ± 12.5 mm Hg and Q̇ was 9.6 ± 1.5 L·min(-1)). INT, in contrast with tolerant subjects, did not sustain standing because HR was unable to correct for the P̄ drop. These results indicate a major role for impaired arterial baroreflexes in the onset of orthostatic intolerance.


Assuntos
Barorreflexo , Repouso em Cama , Débito Cardíaco , Sistema Cardiovascular , Frequência Cardíaca , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...