Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6627): 78-83, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603094

RESUMO

Glacier mass loss affects sea level rise, water resources, and natural hazards. We present global glacier projections, excluding the ice sheets, for shared socioeconomic pathways calibrated with data for each glacier. Glaciers are projected to lose 26 ± 6% (+1.5°C) to 41 ± 11% (+4°C) of their mass by 2100, relative to 2015, for global temperature change scenarios. This corresponds to 90 ± 26 to 154 ± 44 millimeters sea level equivalent and will cause 49 ± 9 to 83 ± 7% of glaciers to disappear. Mass loss is linearly related to temperature increase and thus reductions in temperature increase reduce mass loss. Based on climate pledges from the Conference of the Parties (COP26), global mean temperature is projected to increase by +2.7°C, which would lead to a sea level contribution of 115 ± 40 millimeters and cause widespread deglaciation in most mid-latitude regions by 2100.

2.
Sci Adv ; 5(6): eaav9396, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31223652

RESUMO

The Greenland Ice Sheet holds 7.2 m of sea level equivalent and in recent decades, rising temperatures have led to accelerated mass loss. Current ice margin recession is led by the retreat of outlet glaciers, large rivers of ice ending in narrow fjords that drain the interior. We pair an outlet glacier-resolving ice sheet model with a comprehensive uncertainty quantification to estimate Greenland's contribution to sea level over the next millennium. We find that Greenland could contribute 5 to 33 cm to sea level by 2100, with discharge from outlet glaciers contributing 8 to 45% of total mass loss. Our analysis shows that uncertainties in projecting mass loss are dominated by uncertainties in climate scenarios and surface processes, whereas uncertainties in calving and frontal melt play a minor role. We project that Greenland will very likely become ice free within a millennium without substantial reductions in greenhouse gas emissions.

3.
Nat Commun ; 8(1): 90, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733603

RESUMO

Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...