Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 198: 115891, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101054

RESUMO

As awareness on the impact of anthropogenic underwater noise on marine life grows, underwater noise measurement programs are needed to determine the current status of marine areas and monitor long-term trends. The Joint Monitoring Programme for Ambient Noise in the North Sea (JOMOPANS) collaborative project was funded by the EU Interreg to collect a unique dataset of underwater noise levels at 19 sites across the North Sea, spanning many different countries and covering the period from 2019 to 2020. The ambient noise from this dataset has been characterised and compared - setting a benchmark for future measurements in the North Sea area. By identifying clusters with similar sound characteristics in three broadband frequency bands (25-160 Hz, 0.2-1.6 kHz, and 2-10 kHz), geographical areas that are similarly affected by sound have been identified. The measured underwater sound levels show a persistent and spatially uniform correlation with wind speed at high frequencies (above 1 kHz) and a correlation with the distance from ships at mid and high frequencies (between 40 Hz and 4 kHz). Correlation with ocean current velocity at low frequencies (up to 200 Hz), which are susceptible to nonacoustic contamination by flow noise, was also evaluated. These correlations were evaluated and simplified linear scaling laws for wind and current speeds were derived. The presented dataset provides a baseline for underwater noise measurements in the North Sea and shows that spatial variability of the dominant sound sources must be considered to predict the impact of noise reduction measures.


Assuntos
Acústica , Som , Mar do Norte , Ruído , Meio Ambiente , Navios
2.
J Geophys Res Earth Surf ; 123(5): 1145-1159, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30034978

RESUMO

Empirical parameterizations of the shortwave sand transport that are used in practical engineering models lack the representation of certain processes to accurately predict morphodynamics in shallow water. Therefore, measurements of near-bed velocity and suspended sand concentration, collected during two field campaigns (at the Sand Engine and Ameland, the Netherlands) and one field-scale laboratory experiment (BARDEXII), were here analyzed to study the magnitude and direction of the shortwave sand flux in the shallow surf zone. Shortwave sand fluxes dominated the total sand flux during low-energetic accretive conditions, while the mean cross-shore current (undertow) dominated the total flux during high-energetic erosive conditions. Under low-energetic conditions, the onshore-directed shortwave sand flux scales with the root-mean-square orbital velocity urms and velocity asymmetry Au but not with the velocity skewness. Under more energetic conditions the shortwave flux reduces with an increase in the cross-shore mean current u¯ and can even become offshore directed. For all data combined, the contribution of the shortwave flux to the total flux scales with (-Auurms)/|u¯| , with a high contribution of the shortwave flux (∼70%) when this ratio is high (∼ 10) and low contributions (∼0%) when this ratio is low (∼1). We argue that the velocity asymmetry is a good proxy for the net effect of several transport mechanisms in the shallow surf zone, including breaking-induced turbulence. These field and laboratory measurements under irregular waves thus support the hypothesis that the inclusion of velocity asymmetry in transport formulations would improve the performance of morphodynamic models in shallow water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...