Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
iScience ; 27(5): 109749, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706850

RESUMO

Insulin signaling to the glomerular podocyte via the insulin receptor (IR) is critical for kidney function. In this study we show that near-complete knockout of the closely related insulin-like growth factor 1 receptor (IGF1R) in podocytes is detrimental, resulting in albuminuria in vivo and podocyte cell death in vitro. In contrast, partial podocyte IGF1R knockdown confers protection against doxorubicin-induced podocyte injury. Proteomic analysis of cultured podocytes revealed that while near-complete loss of podocyte IGF1R results in the downregulation of mitochondrial respiratory complex I and DNA damage repair proteins, partial IGF1R inhibition promotes respiratory complex expression. This suggests that altered mitochondrial function and resistance to podocyte stress depends on the level of IGF1R suppression, the latter determining whether receptor inhibition is protective or detrimental. Our work suggests that the partial suppression of podocyte IGF1R could have therapeutic benefits in treating albuminuric kidney disease.

2.
Eur Spine J ; 32(4): 1455-1462, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36826598

RESUMO

OBJECTIVE: Pyogenic spondylodiscitis is a severe medical condition, often requiring surgical intervention. Numerous risk factors are known, such as obesity, neurological impairment and old age. In-hospital mortality remains high, therefore other factors may be contributing to the increased mortality. To evaluate kidney function as a risk factor for increased morbidity of pyogenic spondylodiscitis, the glomerular filtration rate (GFR) was correlated with the patients' clinical course. MATERIALS AND METHODS: We retrospectively reviewed the cases of 366 patients and 255 were included for analysis. Clinical, laboratory and surgical data were recorded with a minimum follow-up of three months. For clinical outcome measurement, mortality, length of stay and perioperative complications were analysed. RESULTS: The study included 255 patients (173 men, 82 women; mean age 66.3 years). Patients with a GFR < 59 mL/min spent an average of 5 days longer in the hospital than those with a GFR ≥ 60 mL/min (p = 0.071). The mortality rate increased significantly with a decrease in GFR: A GFR of 30-59 mL/min had a mortality rate of 17.6%, whereas a GFR of < 29 mL/min had one of 30.4% (p = 0.003). Patients with impaired GFR showed an increased rate of postoperative complications (OR 4.7 p = 0.002) and higher rate of intensive care unit (ICU) stay (OR 8.7 p = < 0.001). DISCUSSION: Preoperative GFR values showed a significant correlation with in-hospital mortality in patients with spondylodiscitis, when graded according to the KDIGO stages. Furthermore, a GFR of < 29 ml/mL contributes to a longer ICU stay, postoperative complications and a longer total hospital stay. Therefore, the preoperative GFR could be a marker of kidney function and as a valuable predictive risk factor regarding the clinical in-hospital course of patients suffering from pyogenic spondylodiscitis.


Assuntos
Discite , Masculino , Humanos , Feminino , Idoso , Discite/cirurgia , Taxa de Filtração Glomerular , Estudos Retrospectivos , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia , Rim
3.
Cells ; 12(2)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672207

RESUMO

Reactive oxygen species (ROS), which excessively arise in diabetes and systemic inflammatory diseases, modify cellular lipids and cellular lipid composition leading to altered biophysical properties of cellular membranes. The impact of lipid peroxidation on transmembrane signaling routes is not yet well studied. The canonical transient receptor potential channel 6 (TRPC6) is implicated in the pathogenesis of several forms of glomerular diseases. TRPC6 is sensitive to membrane stretch and relies on a distinct lipid environment. This study investigates the effect of oxidative alterations to plasma membrane lipids on TRPC6 activity and the function of the glomerular filter. Knockout of the anti-oxidative, lipid modifying enzyme paraoxonase 2 (PON2) leads to altered biophysical properties of glomerular epithelial cells, which are called podocytes. Cortical stiffness, quantified by atomic force microscopy, was largely increased in PON2-deficient cultured podocytes. PON2 deficiency markedly enhanced TRPC6 channel currents and channel recovery. Treatment with the amphiphilic substance capsazepine in micromolar doses reduced cortical stiffness and abrogated TRPC6 conductance. In in vivo studies, capsazepine reduced the glomerular phenotype in the model of adriamycin-induced nephropathy in PON2 knockout mice and wildtype littermates. In diabetic AKITA mice, the progression of albuminuria and diabetic kidney disease was delayed. In summary, we provide evidence that the modification of membrane characteristics affects TRPC6 signaling. These results could spur future research to investigate modification of the direct lipid environment of TRPC6 as a future therapeutic strategy in glomerular disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Canal de Cátion TRPC6 , Canais de Cátion TRPC/metabolismo , Doxorrubicina/efeitos adversos , Camundongos Knockout , Capsaicina
4.
J Thromb Haemost ; 21(3): 559-572, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696206

RESUMO

BACKGROUND: The von Willebrand factor-directed nanobody caplacizumab has greatly changed the treatment of immune thrombotic thrombocytopenic purpura (iTTP) in recent years. Data from randomized controlled trials established efficacy and safety. OBJECTIVES: This study aims to address open questions regarding patient selection, tailoring of therapy duration, obstacles in prescribing caplacizumab in iTTP, effect on adjunct treatment, and outcomes in the real-world setting. METHODS: We report retrospective, observational cohorts of 113 iTTP episodes treated with caplacizumab and 119 historical control episodes treated without caplacizumab. We aggregated data from the caplacizumab phase II/III trials and real-world data from France, the United Kingdom, Germany, and Austria (846 episodes, 396 treated with caplacizumab, and 450 historical controls). RESULTS: Caplacizumab was efficacious in iTTP, independent of the timing of therapy initiation, but curtailed the time of active iTTP only when used in the first-line therapy within 72 hours after diagnosis and until at least partial ADAMTS13-activity remission. Aggregated data from multiple study populations showed that caplacizumab use resulted in significant absolute risk reduction of 2.87% for iTTP-related mortality (number needed to treat 35) and a relative risk reduction of 59%. CONCLUSION: Caplacizumab should be used in first line and until ADAMTS13-remission, lowers iTTP-related mortality and refractoriness, and decreases the number of daily plasma exchange and hospital stay. This trial is registered at www. CLINICALTRIALS: gov as #NCT04985318.


Assuntos
Púrpura Trombocitopênica Idiopática , Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Trombose , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Proteína ADAMTS13
5.
Cells ; 11(22)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429053

RESUMO

Diabetes and inflammatory diseases are associated with an altered cellular lipid composition due to lipid peroxidation. The pathogenic potential of these lipid alterations in glomerular kidney diseases remains largely obscure as suitable cell culture and animal models are lacking. In glomerular disease, a loss of terminally differentiated glomerular epithelial cells called podocytes refers to irreversible damage. Podocytes are characterized by a complex ramified cellular architecture and highly active transmembrane signaling. Alterations in lipid composition in states of disease have been described in podocytes but the pathophysiologic mechanisms mediating podocyte damage are unclear. In this study, we employ a genetic deletion of the anti-oxidative, lipid-modifying paraoxonase 2 enzyme (PON2) as a model to study altered cellular lipid composition and its effects on cellular signaling in glomerular disease. PON2 deficiency reproduces features of an altered lipid composition of glomerular disease, characterized by an increase in ceramides and cholesterol. PON2 knockout mice are more susceptible to glomerular damage in models of aggravated oxidative stress such as adriamycin-induced nephropathy. Voltage clamp experiments in cultured podocytes reveal a largely increased TRPC6 conductance after a membrane stretch in PON2 deficiency. Correspondingly, a concomitant knockout of TRPC6 and PON2 partially rescues the aggravated glomerular phenotype of a PON2 knockout in the adriamycin model. This study establishes PON2 deficiency as a model to investigate the pathophysiologic mechanisms of podocyte dysfunction related to alterations in the lipid composition, as seen in diabetic and inflammatory glomerular disease. Expanding the knowledge on these routes and options of intervention could lead to novel treatment strategies for glomerular disease.


Assuntos
Diabetes Mellitus , Nefropatias , Camundongos , Animais , Canal de Cátion TRPC6 , Arildialquilfosfatase/genética , Camundongos Knockout , Doxorrubicina , Lipídeos
6.
Nat Commun ; 13(1): 2422, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504916

RESUMO

Chronic kidney diseases and acute kidney injury are mechanistically distinct kidney diseases. While chronic kidney diseases are associated with podocyte injury, acute kidney injury affects renal tubular epithelial cells. Despite these differences, a cardinal feature of both acute and chronic kidney diseases is dysregulated actin cytoskeleton. We have shown that pharmacological activation of GTPase dynamin ameliorates podocyte injury in murine models of chronic kidney diseases by promoting actin polymerization. Here we establish dynamin's role in modulating stiffness and polarity of renal tubular epithelial cells by crosslinking actin filaments into branched networks. Activation of dynamin's crosslinking capability by a small molecule agonist stabilizes the actomyosin cortex of the apical membrane against injury, which in turn preserves renal function in various murine models of acute kidney injury. Notably, a dynamin agonist simultaneously attenuates podocyte and tubular injury in the genetic murine model of Alport syndrome. Our study provides evidence for the feasibility and highlights the benefits of novel holistic nephron-protective therapies.


Assuntos
Injúria Renal Aguda , Podócitos , Insuficiência Renal Crônica , Citoesqueleto de Actina , Injúria Renal Aguda/prevenção & controle , Animais , Dinaminas , Feminino , Humanos , Rim/fisiologia , Masculino , Camundongos , Insuficiência Renal Crônica/tratamento farmacológico
7.
Nephrol Dial Transplant ; 37(7): 1229-1234, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195251

RESUMO

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease that is caused by severe ADAMTS-13 deficiency. Immune-mediated TTP develops due to autoantibodies against ADAMTS-13, whereas congenital TTP is caused by mutations in the ADAMTS13 gene. Diagnostic possibilities and treatment options in TTP have emerged in recent years, which prompted the International Society on Thrombosis and Haemostasis (ISTH) to publish clinical practice guidelines for the diagnosis and treatment of TTP in 2020. In this article, the European Renal Best Practice Working Group endorsed the ISTH guidelines and emphasizes a number of considerations, including the importance of rapid ADAMTS-13 activity testing, the use of rituximab and anti-von Willebrand factor therapies such as caplacizumab, that enhance the clinical applicability of the guidelines in Europe.


Assuntos
Púrpura Trombocitopênica Trombótica , Trombose , Proteína ADAMTS13 , Hemostasia , Humanos , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/etiologia , Púrpura Trombocitopênica Trombótica/terapia , Trombose/diagnóstico , Trombose/etiologia , Trombose/terapia , Fator de von Willebrand
8.
J Thromb Haemost ; 20(4): 951-960, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35000278

RESUMO

BACKGROUND: The anti-von Willebrand factor (VWF) nanobody caplacizumab directly prevents the fatal microthrombi formation in immune-mediated thrombotic thrombocytopenic purpura (iTTP), thereby adding a new therapeutic principle to the treatment of this disorder. However, real-world treatment modalities beyond clinical trials remain heterogeneous. METHODS: Here, we describe the risks and benefits of an alternate-day dosing regimen for caplacizumab by thoroughly analyzing the timing and outcome of this approach in a retrospective cohort of 25 iTTP patients treated with caplacizumab at seven different medical centers in Austria and Germany between 2018 and 2021. RESULTS: Alternate-day dosing of caplacizumab appeared feasible and led to persisting normal platelet counts in most patients. Five patients experienced iTTP exacerbations or relapses that led to the resumption of daily caplacizumab application. VWF activity was repeatedly measured in 16 of 25 patients and documented sufficient suppression by caplacizumab after 24 and 48 h in line with published pharmacodynamics. CONCLUSION: Extension of caplacizumab application intervals from daily to alternate-day dosing may be safely considered in selected patients after 3 to 4 weeks of daily treatment. Earlier modifications may be discussed in low-risk patients but require close monitoring for clinical and laboratory features of thrombotic microangiopathy.


Assuntos
Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Proteína ADAMTS13/uso terapêutico , Humanos , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Estudos Retrospectivos , Anticorpos de Domínio Único/efeitos adversos , Fator de von Willebrand/uso terapêutico
10.
Kidney Int ; 101(4): 733-751, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34929254

RESUMO

Glomerular diseases are a major cause for chronic kidney disorders. In most cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and loss of podocytes. Here, we establish a link between the Par3 polarity complex and actin regulators necessary to establish and maintain podocyte architecture by utilizing mouse and Drosophila models to characterize the functional role of Par3A and Par3B and its fly homologue Bazooka in vivo. Only simultaneous inactivation of both Par3 proteins caused a severe disease phenotype. Rescue experiments in Drosophila nephrocytes revealed atypical protein kinase C (aPKC)-Par6 dependent and independent effects. While Par3A primarily acts via aPKC-Par6, Par3B function was independent of Par6. Actin-associated synaptopodin protein levels were found to be significantly upregulated upon loss of Par3A/B in mouse podocytes. Tropomyosin2, which shares functional similarities with synaptopodin, was also elevated in Bazooka depleted nephrocytes. The simultaneous depletion of Bazooka and Tropomyosin2 resulted in a partial rescue of the Bazooka knockdown phenotype and prevented increased Rho1-GTP, a member of a GTPase protein family regulating the cytoskeleton. The latter contribute to the nephrocyte phenotype observed upon loss of Bazooka. Thus, we demonstrate that Par3 proteins share a high functional redundancy but also have specific functions. Par3A acts in an aPKC-Par6 dependent way and regulates RhoA-GTP levels, while Par3B exploits Par6 independent functions influencing synaptopodin localization. Hence, Par3A and Par3B link elements of polarity signaling and actin regulators to maintain podocyte architecture.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila , Podócitos , Actinas/metabolismo , Animais , Polaridade Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/genética , Camundongos , Podócitos/metabolismo , Proteína Quinase C
11.
Cells ; 10(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572114

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is expressed in terminally differentiated cells, where it drives development, morphogenesis, and survival. Temporal and spatial kinase activity is regulated by specific activators of Cdk5, dependent on the cell type and environmental factors. In the kidney, Cdk5 is exclusively expressed in terminally differentiated glomerular epithelial cells called podocytes. In glomerular disease, signaling mechanisms via Cdk5 have been addressed by single or combined conventional knockout of known specific activators of Cdk5. A protective, anti-apoptotic role has been ascribed to Cdk5 but not a developmental phenotype, as in terminally differentiated neurons. The effector kinase itself has never been addressed in animal models of glomerular disease. In the present study, conditional and inducible knockout models of Cdk5 were analyzed to investigate the role of Cdk5 in podocyte development and glomerular disease. While mice with podocyte-specific knockout of Cdk5 had no developmental defects and regular lifespan, loss of Cdk5 in podocytes increased susceptibility to glomerular damage in the nephrotoxic nephritis model. Glomerular damage was associated with reduced anti-apoptotic signals in Cdk5-deficient mice. In summary, Cdk5 acts primarily as master regulator of podocyte survival during glomerular disease and-in contrast to neurons-does not impact on glomerular development or maintenance.


Assuntos
Apoptose , Diferenciação Celular , Quinase 5 Dependente de Ciclina/fisiologia , Glomerulosclerose Segmentar e Focal/patologia , Podócitos/citologia , Animais , Células Cultivadas , Glomerulosclerose Segmentar e Focal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Podócitos/metabolismo , Transdução de Sinais
13.
J Thromb Haemost ; 18(11): 3061-3066, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32757435

RESUMO

BACKGROUND: Acquired thrombotic thrombocytopenic purpura (aTTP) is a rare, life-threatening autoimmune thrombotic microangiopathy. Current standard of care is therapeutic plasma exchange, immunosuppression, and caplacizumab, an anti-von Willebrand factor nanobody, which is effective in treating aTTP episodes. PATIENTS/METHODS: Here we report on seven episodes of aTTP treated without plasma exchange in six female patients in Germany and Austria. Two episodes were initial presentations of aTTP; in five instances, patients experienced a relapse. In four episodes, moderate to severe organ dysfunction was observed; three cases presented with a mild course. All patients received caplacizumab immediately once aTTP was suspected or diagnosed, and plasma exchange was omitted based on shared decision making between patient and the treating physicians. RESULTS: We observed a rapid and robust increase of platelet counts already after the first dose of caplacizumab, leading to a doubling of platelet counts within 17 hours (median), platelet counts normalized (>150 G/L) after median 84 hours. Lactate dehydrogenase, as a surrogate parameter of organ damage, improved in parallel to the platelet counts, indicating resolving microangiopathy. CONCLUSIONS: In conclusion, in selected cases of acute bouts of aTTP, it seems feasible to delay or omit plasma exchange if platelet counts increase and organ function is stable after start of caplacizumab therapy.


Assuntos
Púrpura Trombocitopênica Trombótica , Proteína ADAMTS13 , Áustria , Feminino , Fibrinolíticos/uso terapêutico , Alemanha , Humanos , Troca Plasmática , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Anticorpos de Domínio Único
14.
Hypertension ; 76(4): 1176-1184, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623922

RESUMO

Preeclampsia is a potentially life-threatening multisystem disease affecting 4% to 8% of pregnant women after the 20th week of gestation. An excess of placental expressed antiangiogenic soluble VEGF (vascular endothelial growth factor)-receptor 1 (soluble FMS-like tyrosine kinase 1) scavenges VEGF and PlGF (placental growth factor), causing generalized endothelial dysfunction. Interventions to restore the angiogenic balance in preeclamptic pregnancies are intensively studied and improve maternal and neonatal outcomes. Especially extracorporeal strategies to remove sFlt-1 are promising in human pregnancy. However, available apheresis systems adsorb sFlt-1 unspecifically and with low efficiency. Affinity-enhanced ligands are needed to improve performance and compatibility of apheresis treatments. Using computerized molecular modeling, we developed multimeric VEGF molecules comprised of single-chain VEGF165 dimers (scVEGF165). A short peptide linker hampers intrachain dimerization to induce assembly preferably as tetrameric molecules as visualized in negative staining electron microscopy. scVEGF165 multimers possess 1.2-fold higher affinity for sFlt-1 as compared to the available antibodies or monomeric VEGF. Consequently, scVEGF multimers have the ability to competitively release sFlt-1 bound PlGF and, in particular, VEGF. In ex vivo adsorption experiments using serum samples from patients with preeclampsia, scVEGF multimers reduce sFlt-1 levels by 85% and increase PlGF and VEGF levels by 20- and 9-fold, respectively. Finally, performance and stability of sFlt-1 capturing scVEGF165 multimers were scrutinized on different matrices of which biocompatible agarose matrix yielded optimal results. We introduce the first VEGF-based highly efficient sFlt-1 apheresis system that is directly applicable in vivo due to utilization of inert agarose matrix, using a homomultimeric form of VEGF165 to restore the angiogenic balance in preeclampsia.


Assuntos
Modelos Teóricos , Fator de Crescimento Placentário/sangue , Pré-Eclâmpsia/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Biomarcadores/sangue , Feminino , Humanos , Gravidez
15.
Blood Adv ; 4(13): 3085-3092, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32634236

RESUMO

Acquired thrombotic thrombocytopenic purpura (aTTP) is a rare but life-threatening condition. In 2018, the nanobody caplacizumab was approved for the treatment of adults experiencing an acute episode of aTTP, in conjunction with plasma exchange (PEX) and immunosuppression for a minimum of 30 days after stopping daily PEX. We performed a retrospective, observational analysis on the use of caplacizumab in 60 patients from 29 medical centers in Germany during acute disease management. Caplacizumab led to a rapid normalization of the platelet count (median, 3 days; mean 3.78 days). One patient died after late treatment initiation due to aTTP-associated complications. In 2 patients with initial disease presentation and in 4 additional patients with laboratory signs of an exacerbation or relapse after the initial therapy, PEX-free treatment regimens could be established with overall favorable outcome. Caplacizumab is efficacious in the treatment of aTTP independent of timing and ancillary treatment modalities. Based on this real-world experience and published literature, we propose to administer caplacizumab immediately to all patients with an acute episode of aTTP. Treatment decisions regarding the use of PEX should be based on the severity of the clinical presentation and known risk factors. PEX might be dispensable in some patients.


Assuntos
Púrpura Trombocitopênica Trombótica , Anticorpos de Domínio Único , Adulto , Fibrinolíticos/uso terapêutico , Humanos , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Estudos Retrospectivos
16.
Blood Adv ; 4(13): 3093-3101, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32634237

RESUMO

Introduction of the nanobody caplacizumab was shown to be effective in the treatment of acquired thrombotic thrombocytopenic purpura (aTTP) in the acute setting. The official recommendations include plasma exchange (PEX), immunosuppression, and the use of caplacizumab for a minimum of 30 days after stopping daily PEX. This study was a retrospective, observational analysis of the use of caplacizumab in 60 patients from 29 medical centers in Germany. Immunosuppressive treatment led to a rapid normalization of ADAMTS13 activities (calculated median, 21 days). In 35 of 60 patients, ADAMTS13 activities started to normalize before day 30 after PEX; in 11 of 60 patients, the treatment was extended beyond day 30; and in 5 patients, it was extended even beyond day 58 due to persistent autoimmune activity. In 34 of 60 instances, caplacizumab was stopped before day 30 with a favorable outcome whenever ADAMTS13 activities were >10%. In contrast, 11 of 34 patients with ADAMTS13 activities <10% at the time of stopping caplacizumab treatment developed a nonfavorable outcome (disease exacerbation or relapse). In some cases, prolongation of the treatment interval to every other day was feasible and resulted in a sustained reduction of von Willebrand factor activity. ADAMTS13 activity measurements are central for a rapid diagnosis in the acute setting but also to tailor disease management. An ADAMTS13 activity-guided approach seems safe for identifying the individual time point when to stop caplacizumab to prevent overtreatment and undertreatment; this approach will result in significant cost savings without jeopardizing the well-being of patients. In addition, von Willebrand factor activity may serve as a biomarker for drug monitoring.


Assuntos
Púrpura Trombocitopênica Trombótica , Fator de von Willebrand , Proteína ADAMTS13 , Fibrinolíticos/uso terapêutico , Humanos , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Estudos Retrospectivos , Anticorpos de Domínio Único
17.
Nat Metab ; 2(5): 461-474, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32694662

RESUMO

Mammalian kidneys constantly filter large amounts of liquid, with almost complete retention of albumin and other macromolecules in the plasma. Breakdown of the three-layered renal filtration barrier results in loss of albumin into urine (albuminuria) across the wall of small renal capillaries, and is a leading cause of chronic kidney disease. However, exactly how the renal filter works and why its permeability is altered in kidney diseases is poorly understood. Here we show that the permeability of the renal filter is modulated through compression of the capillary wall. We collect morphometric data prior to and after onset of albuminuria in a mouse model equivalent to a human genetic disease affecting the renal filtration barrier. Combining quantitative analyses with mathematical modelling, we demonstrate that morphological alterations of the glomerular filtration barrier lead to reduced compressive forces that counteract filtration pressure, thereby resulting in capillary dilatation, and ultimately albuminuria. Our results reveal distinct functions of the different layers of the filtration barrier and expand the molecular understanding of defective renal filtration in chronic kidney disease.


Assuntos
Albuminúria/etiologia , Insuficiência Renal Crônica/complicações , Albuminúria/genética , Albuminúria/patologia , Animais , Capilares , Modelos Animais de Doenças , Feminino , Genótipo , Barreira de Filtração Glomerular , Taxa de Filtração Glomerular , Humanos , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Teóricos , Podócitos/patologia , Podócitos/ultraestrutura , RNA/genética , Insuficiência Renal Crônica/patologia , Vasodilatação
18.
J Am Soc Nephrol ; 31(3): 544-559, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047005

RESUMO

BACKGROUND: Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS: We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS: Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS: We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.


Assuntos
Filaminas/genética , Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/patologia , Proteômica/métodos , Estresse Fisiológico/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/genética , Humanos , Camundongos , Podócitos/metabolismo , Proteinúria/genética , Proteinúria/fisiopatologia , Distribuição Aleatória , Ratos
19.
Cell Rep ; 27(5): 1551-1566.e5, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042480

RESUMO

The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS).


Assuntos
Glicólise , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Podócitos/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Dinaminas/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Podócitos/ultraestrutura
20.
Front Pediatr ; 6: 193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057894

RESUMO

Diseases affecting the glomeruli of the kidney, the renal filtration units, are a leading cause of chronic kidney disease and end-stage renal failure. Despite recent advances in the understanding of glomerular biology, treatment of these disorders has remained extraordinarily challenging in many cases. The use of experimental models has proven invaluable to study renal, and in particular, glomerular biology and disease. Over the past 15 years, studies identified different and very distinct pathogenic mechanisms that result in damage, loss of glomerular visceral epithelial cells (podocytes) and progressive renal disease. However, animal studies and, in particular, mouse studies are often protracted and cumbersome due to the long reproductive cycle and high keeping costs. Transgenic and heterologous expression models have been speeded-up by novel gene editing techniques, yet they still take months. In addition, given the complex cellular biology of the filtration barrier, certain questions may not be directly addressed using mouse models due to the limited accessibility of podocytes for analysis and imaging. In this review, we will describe alternative models to study podocyte biology experimentally. We specifically discuss current podocyte cell culture models, their role in experimental strategies to analyze pathophysiologic mechanisms as well as limitations with regard to transferability of results. We introduce current models in Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio that allow for analysis of protein interactions, and principle signaling pathways in functional biological structures, and enable high-throughput transgenic expression or compound screens in multicellular organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...