Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Affect Disord ; 358: 250-259, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723679

RESUMO

BACKGROUND: This exploratory study investigated cerebrospinal fluid (CSF) synaptic protein biomarkers in bipolar disorder (BD), aiming to highlight the neurobiological basis of the disorder. With shared cognitive impairment features between BD and Alzheimer's disease, and considering increased dementia risk in BD patients, the study explores potential connections. METHODS: Fifty-nine well-characterized patients with BD and thirty-seven healthy control individuals were examined and followed for one year. Synaptic proteins encompassing neuronal pentraxins (NPTX)1, NPTX2, and NPTX-receptor, 14-3-3 protein family epsilon, and zeta/delta, activating protein-2 complex subunit beta, synucleins beta-synuclein and gamma-synuclein, complexin-2, phosphatidylethanolamine-binding protein 1, rab GDP dissociation inhibitor alpha, and syntaxins 1B and 7 were measured in CSF using a microflow liquid chromatography-mass spectrometric multiple reaction monitoring set-up. Biomarker levels were compared between BD and HC and in BD before, during, and after mood episodes. RESULTS: The synaptic proteins revealed no statistically significant differences between BD and HC, neither at baseline, one-year follow-up, or in terms of changes from baseline to follow-up. Moreover, the CSF synaptic protein levels in patients with BD were unaltered compared to baseline when they stabilized in euthymia following an affective episode and at one-year follow-up. LIMITATION: It is uncertain what the CSF biomarker concentrations reflect since we yet do not know the mechanisms of release of these proteins, and we are uncertain of what increased or decreased levels reflect. CONCLUSION: This first-ever investigation of a panel of CSF protein biomarkers of synaptic dysfunction in patients with BD and HC individuals found no statistically significant differences cross-sectionally or longitudinally.


Assuntos
Biomarcadores , Transtorno Bipolar , Humanos , Transtorno Bipolar/líquido cefalorraquidiano , Feminino , Masculino , Biomarcadores/líquido cefalorraquidiano , Pessoa de Meia-Idade , Estudos Longitudinais , Estudos de Casos e Controles , Adulto , Sinapses , Proteínas do Tecido Nervoso/líquido cefalorraquidiano
2.
NPJ Parkinsons Dis ; 10(1): 102, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760408

RESUMO

Lysosomal and synaptic dysfunctions are hallmarks in neurodegeneration and potentially relevant as biomarkers, but data on early Parkinson's disease (PD) is lacking. We performed targeted mass spectrometry with an established protein panel, assessing autophagy and synaptic function in cerebrospinal fluid (CSF) of drug-naïve de novo PD, and sex-/age-matched healthy controls (HC) cross-sectionally (88 PD, 46 HC) and longitudinally (104 PD, 58 HC) over 10 years. Multiple markers of autophagy, synaptic plasticity, and secretory pathways were reduced in PD. We added samples from prodromal subjects (9 cross-sectional, 12 longitudinal) with isolated REM sleep behavior disorder, revealing secretogranin-2 already decreased compared to controls. Machine learning identified neuronal pentraxin receptor and neurosecretory protein VGF as most relevant for discriminating between groups. CSF levels of LAMP2, neuronal pentraxins, and syntaxins in PD correlated with clinical progression, showing predictive potential for motor- and non-motor symptoms as a valid basis for future drug trials.

4.
Brain ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325331

RESUMO

Synaptic dysfunction and degeneration is likely the key pathophysiology for the progression of cognitive decline in various dementia disorders. Synaptic status can be monitored by measurement of synaptic proteins in cerebrospinal fluid (CSF). In the current study, the aim was to investigate and compare both known and new synaptic proteins as potential biomarkers of synaptic dysfunction, especially in the context of Alzheimer's disease (AD). Seventeen synaptic proteins were quantified in CSF using two different targeted mass spectrometry assays in the prospective Swedish BioFINDER-2 study. The study included 958 individuals, characterized as having mild cognitive impairment (MCI, n = 205), AD dementia (n = 149), and a spectrum of other neurodegenerative diseases (n = 171), as well as cognitively unimpaired (CU, n = 443). Synaptic protein levels were compared between diagnostic groups and their associations with cognitive decline and key neuroimaging measures (Aß-PET, tau-PET, and cortical thickness) were assessed. Among the 17 synaptic proteins examined, 14 were specifically elevated in the AD continuum. SNAP-25, 14-3-3 zeta/delta, beta-synuclein, and neurogranin exhibited the highest discriminatory accuracy to differentiate AD dementia from controls (AUCs = 0.81-0.93). SNAP-25 and 14-3-3 zeta/delta also had the strongest associations with tau-PET, Aß-PET, and cortical thickness at baseline, and were associated with longitudinal changes in these imaging biomarkers (ß(SE)=-0.056(0.0006) to 0.058(0.005), p < 0.0001). SNAP-25 was the strongest predictor of progression to AD dementia in non-demented individuals (Hazard ratio = 2.11). In contrast, neuronal pentraxins were decreased in all neurodegenerative diseases (except for Parkinson's disease), and NPTX2 showed the strongest associations with subsequent cognitive decline (longitudinal MMSE; ß(SE) = 0.57(0.1), p ≤ 0.0001 and mPACC; ß(SE) = 0.095(0.024), p ≤ 0.001) across the AD continuum. Interestingly, utilizing a ratio of the proteins that displayed higher levels in AD, such as SNAP-25 or 14-3-3 zeta/delta, over NPTX2 improved the biomarkers' association with cognitive decline and brain atrophy. We found that especially 14-3-3 zeta/delta and SNAP-25 are promising synaptic biomarkers of pathophysiological changes in AD. Neuronal pentraxins were identified as general indicators of neurodegeneration and associated with cognitive decline across various neurodegenerative dementias. The ratios of SNAP-25/NPTX2 and 14-3-3 zeta/delta/NPTX2 were found to best predict cognitive decline and brain atrophy.

5.
Mol Cell Proteomics ; 23(2): 100721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246483

RESUMO

Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo
6.
J Neurol ; 271(3): 1277-1285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917233

RESUMO

Increasing evidence implicates endo-lysosomal dysfunction in frontotemporal dementia (FTD). 18 proteins were quantified using a mass spectrometry assay panel in the cerebrospinal fluid of 36 people with the language variant of FTD, primary progressive aphasia (PPA) (including 13 with non-fluent variant (nfvPPA), 11 with semantic variant (svPPA), and 12 with logopenic variant (lvPPA)) and 19 healthy controls. The concentrations of the cathepsins (B, D, F, L1, and Z) as well as AP-2 complex subunit beta, ganglioside GM2 activator, beta-hexosaminidase subunit beta, tissue alpha L-fucosidase, and ubiquitin were decreased in nfvPPA compared with controls. In contrast, the concentrations of amyloid beta A4 protein, cathepsin Z, and dipeptidyl peptidase 2 were decreased in svPPA compared with controls. No proteins were abnormal in lvPPA. These results indicate a differential alteration of lysosomal proteins in the PPA variants, suggesting those with non-Alzheimer's pathologies are more likely to show abnormal lysosomal function.


Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Humanos , Peptídeos beta-Amiloides , Idioma , Lisossomos/patologia
7.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001539

RESUMO

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Gliose , Proteínas tau/metabolismo , Proteínas 14-3-3
8.
Brain ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992295

RESUMO

Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signaling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein (IGFBP) in the cerebrospinal fluid (CSF) - IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD biomarkers and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aß) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aß42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the QFP cohort, a unique population isolate from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and was negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 (CSF Aß(+)/t-tau(+)). In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (HR = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049), however IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2, in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aß(+)/t-tau(+) individuals and those with a greater risk of AD conversion.

9.
Brain Commun ; 5(5): fcad228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680670

RESUMO

Alzheimer's disease is a multifactorial disorder with large heterogeneity. Comorbidities such as hypertension, hypercholesterolaemia and diabetes are known contributors to disease progression. However, less is known about their mechanistic contribution to Alzheimer's pathology and neurodegeneration. The aim of this study was to investigate the relationship of several biomarkers related to risk mechanisms in Alzheimer's disease with the well-established Alzheimer's disease markers in a memory clinic population without common comorbidities. We investigated 13 molecular markers representing key mechanisms underlying Alzheimer's disease pathogenesis in CSF from memory clinic patients without diagnosed hypertension, hypercholesterolaemia or diabetes nor other neurodegenerative disorders. An analysis of covariance was used to compare biomarker levels between clinical groups. Associations were analysed by linear regression. Two-step cluster analysis was used to determine patient clusters. Two key markers were analysed by immunofluorescence staining in the hippocampus of non-demented control and Alzheimer's disease individuals. CSF samples from a total of 90 participants were included in this study: 30 from patients with subjective cognitive decline (age 62.4 ± 4.38, female 60%), 30 with mild cognitive impairment (age 65.6 ± 7.48, female 50%) and 30 with Alzheimer's disease (age 68.2 ± 7.86, female 50%). Angiotensinogen, thioredoxin-1 and interleukin-15 had the most prominent associations with Alzheimer's disease pathology, synaptic and axonal damage markers. Synaptosomal-associated protein 25 kDa and neurofilament light chain were increased in mild cognitive impairment and Alzheimer's disease patients. Grouping biomarkers by biological function showed that inflammatory and survival components were associated with Alzheimer's disease pathology, synaptic dysfunction and axonal damage. Moreover, a vascular/metabolic component was associated with synaptic dysfunction. In the data-driven analysis, two patient clusters were identified: Cluster 1 had increased CSF markers of oxidative stress, vascular pathology and neuroinflammation and was characterized by elevated synaptic and axonal damage, compared with Cluster 2. Clinical groups were evenly distributed between the clusters. An analysis of post-mortem hippocampal tissue showed that compared with non-demented controls, angiotensinogen staining was higher in Alzheimer's disease and co-localized with phosphorylated-tau. The identification of biomarker-driven endophenotypes in cognitive disorder patients further highlights the biological heterogeneity of Alzheimer's disease and the importance of tailored prevention and treatment strategies.

10.
J Alzheimers Dis ; 92(2): 467-475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776062

RESUMO

BACKGROUND: Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) share pathogenic pathways related to amyloid-ß deposition. Whereas AD is known to affect synaptic function, such an association for CAA remains yet unknown. OBJECTIVE: We therefore aimed to investigate synaptic dysfunction in CAA. METHODS: Multiple reaction monitoring mass spectrometry was used to quantify cerebrospinal fluid (CSF) concentrations of 15 synaptic proteins in CAA and AD patients, and age- and sex-matched cognitively unimpaired controls. RESULTS: We included 25 patients with CAA, 49 patients with AD, and 25 controls. Only neuronal pentraxin-2 levels were decreased in the CSF of CAA patients compared with controls (p = 0.04). CSF concentrations of 12 other synaptic proteins were all increased in AD compared with CAA or controls (all p≤0.01) and were unchanged between CAA and controls. Synaptic protein concentrations in the subgroup of CAA patients positive for AD biomarkers (CAA/ATN+; n = 6) were similar to AD patients, while levels in CAA/ATN- (n = 19) were comparable with those in controls. A regression model including all synaptic proteins differentiated CAA from AD at high accuracy levels (area under the curve 0.987). CONCLUSION: In contrast to AD, synaptic CSF biomarkers were found to be largely unchanged in CAA. Moreover, concomitant AD pathology in CAA is associated with abnormal synaptic protein levels. Impaired synaptic function in AD was confirmed in this independent cohort. Our findings support an apparent differential involvement of synaptic dysfunction in CAA and AD and may reflect distinct pathological mechanisms.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano
11.
Alzheimers Dement (Amst) ; 15(1): e12402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815874

RESUMO

Introduction: Increasing evidence implicates proteostatic dysfunction as an early event in the development of frontotemporal dementia (FTD). This study aimed to explore potential cerebrospinal fluid (CSF) biomarkers associated with the proteolytic systems in genetic FTD caused by CHMP2B mutation. Methods: Combining solid-phase extraction and parallel reaction monitoring mass spectrometry, a panel of 47 peptides derived from 20 proteins was analyzed in CSF from 31 members of the Danish CHMP2B-FTD family. Results: Compared with family controls, mutation carriers had significantly higher levels of complement C9, lysozyme and transcobalamin II, and lower levels of ubiquitin, cathepsin B, and amyloid precursor protein. Discussion: Lower CSF ubiquitin concentrations in CHMP2B mutation carriers indicate that ubiquitin levels relate to the specific disease pathology, rather than all-cause neurodegeneration. Increased lysozyme and complement proteins may indicate innate immune activation. Altered levels of amyloid precursor protein and cathepsins have previously been associated with impaired lysosomal proteolysis in FTD. Highlights: CSF markers of proteostasis were explored in CHMP2B-mediated frontotemporal dementia (FTD).31 members of the Danish CHMP2B-FTD family were included.We used solid-phase extraction and parallel reaction monitoring mass spectrometry.Six protein levels were significantly altered in CHMP2B-FTD compared with controls.Lower CSF ubiquitin levels in patients suggest association with disease mechanisms.

12.
Mov Disord ; 38(2): 267-277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504237

RESUMO

BACKGROUND: Synaptic dysfunction and degeneration are central contributors to the pathogenesis and progression of parkinsonian disorders. Therefore, identification and validation of biomarkers reflecting pathological synaptic alterations are greatly needed and could be used in prognostic assessment and to monitor treatment effects. OBJECTIVE: To explore candidate biomarkers of synaptic dysfunction in Parkinson's disease (PD) and related disorders. METHODS: Mass spectrometry was used to quantify 15 synaptic proteins in two clinical cerebrospinal fluid (CSF) cohorts, including PD (n1  = 51, n2  = 101), corticobasal degeneration (CBD) (n1  = 11, n2  = 3), progressive supranuclear palsy (PSP) (n1  = 22, n2  = 21), multiple system atrophy (MSA) (n1  = 31, n2  = 26), and healthy control (HC) (n1  = 48, n2  = 30) participants, as well as Alzheimer's disease (AD) (n2  = 23) patients in the second cohort. RESULTS: Across both cohorts, lower levels of the neuronal pentraxins (NPTX; 1, 2, and receptor) were found in PD, MSA, and PSP, compared with HC. In MSA and PSP, lower neurogranin, AP2B1, and complexin-2 levels compared with HC were observed. In AD, levels of 14-3-3 zeta/delta, beta- and gamma-synuclein were higher compared with the parkinsonian disorders. Lower pentraxin levels in PD correlated with Mini-Mental State Exam scores and specific cognitive deficits (NPTX2; rho = 0.25-0.32, P < 0.05) and reduced dopaminergic pre-synaptic integrity as measured by DaTSCAN (NPTX2; rho = 0.29, P = 0.023). Additionally, lower levels were associated with the progression of postural imbalance and gait difficulty symptoms (All NPTX; ß-estimate = -0.025 to -0.038, P < 0.05) and cognitive decline (NPTX2; ß-estimate = 0.32, P = 0.021). CONCLUSIONS: These novel findings show different alterations of synaptic proteins in parkinsonian disorders compared with AD and HC. The neuronal pentraxins may serve as prognostic CSF biomarkers for both cognitive and motor symptom progression in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Doença de Parkinson/complicações , Transtornos Parkinsonianos/patologia , Paralisia Supranuclear Progressiva/diagnóstico , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Alzheimer/complicações , Biomarcadores/líquido cefalorraquidiano
13.
Alzheimers Dement ; 19(5): 1775-1784, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36239248

RESUMO

INTRODUCTION: Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD: Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS: Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION: Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS: A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/genética , Neurogranina , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano
14.
Nat Commun ; 13(1): 6427, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329007

RESUMO

Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Complemento C4a/genética , Complemento C4a/líquido cefalorraquidiano , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transtornos Psicóticos/genética , Fatores de Risco
15.
Alzheimers Res Ther ; 14(1): 118, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045450

RESUMO

BACKGROUND: Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes accounting for most of the inheritance: C9orf72, GRN, and MAPT. Impaired synaptic health is a common mechanism in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular dysfunction within therapeutic trials. METHODS: A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presymptomatic (31 C9orf72, 23 GRN, 23 MAPT) and 55 symptomatic (26 C9orf72, 17 GRN, 12 MAPT) mutation carriers as well as 61 mutation-negative controls were measured using a microflow LC PRM-MS set-up targeting 15 synaptic proteins: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-synuclein, 14-3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped linear regression model, adjusting for age and sex. RESULTS: CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta-synuclein, gamma-synuclein, 14-3-3-eta, neurogranin, Rab GDI alpha, syntaxin-1B, syntaxin-7, and PEBP-1, with three other proteins increased in MAPT mutation carriers compared with the other genetic groups (AP-2 complex subunit beta, complexin-2, and 14-3-3 zeta/delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased compared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset. CONCLUSIONS: Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multiple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is needed to understand how these markers change throughout the course of the disease.


Assuntos
Demência Frontotemporal , Biomarcadores/líquido cefalorraquidiano , Proteína C9orf72/líquido cefalorraquidiano , Proteína C9orf72/genética , Demência Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/genética , Humanos , Mutação/genética , Neurogranina/líquido cefalorraquidiano , Neurogranina/genética , Sintaxina 1/líquido cefalorraquidiano , Sintaxina 1/genética , beta-Sinucleína/genética , gama-Sinucleína/líquido cefalorraquidiano , gama-Sinucleína/genética , Proteínas tau/genética
16.
Neurology ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36041868

RESUMO

BACKGROUND AND OBJECTIVES: Synaptic dysfunction and degeneration is a predominant feature of brain aging and synaptic preservation buffers against Alzheimer's disease (AD) protein-related brain atrophy. We tested whether cerebrospinal fluid (CSF) synaptic protein concentrations similarly moderate the effects of axonal injury, indexed via CSF neurofilament light [NfL], on brain atrophy in clinically normal adults. METHODS: Clinically normal older adults enrolled in the observational Hillblom Aging Network study at the UCSF Memory and Aging Center completed baseline lumbar puncture and longitudinal brain MRI (Mean scan [follow-up]=2.6 [3.7 years]). CSF was assayed for synaptic proteins (synaptotagmin-1, synaptosomal-associated protein 2 [SNAP-25], neurogranin, growth associated protein 43 [GAP-43]), axonal injury (NfL), and core AD biomarkers (ptau181/Aß42 ratio; reflecting AD proteinopathy). Ten bilateral temporo-parietal gray matter ROIs shown to be sensitive to clinical AD were summed to generate a composite temporo-parietal ROI. Linear mixed-effects models tested statistical moderation of baseline synaptic proteins on baseline NfL-related temporo-parietal trajectories, controlling for ptau181/Aß42 ratios. RESULTS: Forty-six clinically normal older adults (Mean age=70; 43% female) were included. Synaptic proteins exhibited small to medium correlations with NfL (r range: .10 to .36). Higher baseline NfL, but not ptau181/Aß42 ratios, predicted steeper temporo-parietal atrophy (NfL x time: ß=-0.08, p<.001; ptau181/Aß42 x time: ß=-0.02, p=.31). SNAP-25, neurogranin, and GAP-43 significantly moderated NfL-related atrophy trajectories (-0.07≤ßs≥-0.06, ps<.05) such that NfL was associated with temporo-parietal atrophy at high (more abnormal) but not low (more normal) synaptic protein concentrations. At high NfL concentrations, atrophy trajectories were 1.5 to 4.5 times weaker when synaptic protein concentrations were low (ß range: -0.21 to -0.07) than high (ß range: -0.33 to -0.30). CONCLUSIONS: The association between baseline CSF NfL and longitudinal temporo-parietal atrophy is accelerated by synaptic dysfunction and buffered by synaptic integrity. Beyond AD proteins, concurrent examination of in vivo axonal and synaptic biomarkers may improve detection of neural alterations that precede overt structural changes in AD-sensitive brain regions.

17.
Alzheimers Res Ther ; 14(1): 78, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659284

RESUMO

BACKGROUND: Synaptic dysfunction and degeneration are central to Alzheimer's disease (AD) and have been found to correlate strongly with cognitive decline. Thus, studying cerebrospinal fluid (CSF) biomarkers reflecting synaptic degeneration, such as the presynaptic protein synaptosomal-associated protein 25 (SNAP-25), is of importance to better understand the AD pathophysiology. METHODS: We compared a newly developed Single molecule array (Simoa) immunoassay for SNAP-25 with an in-house immunoprecipitation mass spectrometry (IP-MS) method in a well-characterized clinical cohort (n = 70) consisting of cognitively unimpaired (CU) and cognitively impaired (CI) individuals with and without Aß pathology (Aß+ and Aß-). RESULTS: A strong correlation (Spearman's rank correlation coefficient (rs) > 0.88; p < 0.0001) was found between the Simoa and IP-MS methods, and no statistically significant difference was found for their clinical performance to identify AD pathophysiology in the form of Aß pathology. Increased CSF SNAP-25 levels in CI Aß+ compared with CU Aß- (Simoa, p ≤ 0.01; IP-MS, p ≤ 0.05) and CI Aß- (Simoa, p ≤ 0.01; IP-MS, p ≤ 0.05) were observed. In independent blood samples (n = 32), the Simoa SNAP-25 assay was found to lack analytical sensitivity for quantification of SNAP-25 in plasma. CONCLUSIONS: These results indicate that the Simoa SNAP-25 method can be used interchangeably with the IP-MS method for the quantification of SNAP-25 in CSF. Additionally, these results confirm that CSF SNAP-25 is increased in relation to amyloid pathology in the AD continuum.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos , Espectrometria de Massas , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteína 25 Associada a Sinaptossoma/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
18.
Mult Scler Relat Disord ; 63: 103846, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550479

RESUMO

BACKGROUND: Fatigue is the major cause of disability in MS. Fatigue has been suggested to be primary, part of the neurological disease; it can also be secondary to other diseases outside the CNS or exist as a separate comorbidity. The only forms of measurement currently available are through subjective standardized questionnaires, which are not able to identify primary MS-related fatigue. Therefore, there is a need for objective biomarkers of fatigue in MS. This study explored the viability of 17 possible biomarkers of primary fatigue in MS. Our chosen biomarker panel represents the function and health of different parts of the CNS. METHODS: We evaluated 31 MS patients and 17 healthy controls using the Fatigue Severity Scale (FSS) and Insomnia Severity Index (ISI). We assessed clinical parameters and collected CSF from all participants to analyze 17 biomarkers, some of which in multiple targeted sequences, reflecting structural and functional changes in the brain. Based on FSS scores, MS was divided into MS-Fatigue (MS-F, FSS ≥ 4) and MS-NoFatigue (MS-NoF, FSS < 4). RESULTS: MS-F had significantly lower levels of amyloid precursor protein (APP) peptides than MS-NoF (p = 0.005, p = 0.011). The only biomarker correlating with FSS in any group was APP in MS (r = -0.47, -0.52; p = 0.007, 0.002). APP did not correlate with any clinical parameter in MS but correlated with multiple markers. In MS, FSS correlated with the ISI and months since diagnosis. CONCLUSION: Although the mechanisms remain unknown, altered APP metabolism in MS seems to be associated with fatigue. APP should be evaluated as a biomarker of the role of structural MS pathology in the development of fatigue in individual MS patients.


Assuntos
Esclerose Múltipla , Precursor de Proteína beta-Amiloide , Biomarcadores , Fadiga/diagnóstico , Fadiga/etiologia , Humanos , Esclerose Múltipla/complicações , Projetos Piloto , Índice de Gravidade de Doença
19.
Alzheimers Res Ther ; 14(1): 71, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606871

RESUMO

BACKGROUND: Synaptic dysfunction is an early core feature of Alzheimer's disease (AD), closely associated with cognitive symptoms. Neuregulin 1 (NRG1) is a growth and differentiation factor with a key role in the development and maintenance of synaptic transmission. Previous reports have shown that changes in cerebrospinal fluid (CSF) NRG1 concentration are associated with cognitive status and biomarker evidence of AD pathology. Plasma biomarkers reflecting synaptic impairment would be of great clinical interest. OBJECTIVE: To measure plasma NRG1 concentration in AD patients in comparison with other neurodegenerative disorders and neurological controls (NC) and to study its association with cerebrospinal fluid (CSF) core AD and synaptic biomarkers. METHODS: This retrospective study enrolled 127 participants including patients with AD at mild cognitive impairment stage (AD-MCI, n = 27) and at dementia stage (n = 35), non-AD dementia (n = 26, Aß-negative), non-AD MCI (n = 19), and neurological controls (n=20). Plasma and CSF NRG1, as well as CSF core AD biomarkers (Aß 42/Aß 40 ratio, phospho-tau, and total tau), were measured using ELISA. CSF synaptic markers were measured using ELISA for GAP-43 and neurogranin and through immunoprecipitation mass spectrometry for SNAP-25. RESULTS: Plasma NRG1 concentration was higher in AD-MCI and AD dementia patients compared with neurological controls (respectively P = 0.005 and P < 0.001). Plasma NRG1 differentiated AD MCI patients from neurological controls with an area under the curve of 88.3%, and AD dementia patients from NC with an area under the curve of 87.3%. Plasma NRG1 correlated with CSF NRG1 (ß = 0.372, P = 0.0056, adjusted on age and sex). Plasma NRG1 was associated with AD CSF core biomarkers in the whole cohort and in Aß-positive patients (ß = -0.197-0.423). Plasma NRG1 correlated with CSF GAP-43, neurogranin, and SNAP-25 (ß = 0.278-0.355). Plasma NRG1 concentration correlated inversely with MMSE in the whole cohort and in Aß-positive patients (all, ß = -0.188, P = 0.038; Aß+: ß = -0.255, P = 0.038). CONCLUSION: Plasma NRG1 concentration is increased in AD patients and correlates with CSF core AD and synaptic biomarkers and cognitive status. Thus, plasma NRG1 is a promising non-invasive biomarker to monitor synaptic impairment in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Proteína GAP-43 , Humanos , Neuregulina-1 , Neurogranina/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Estudos Retrospectivos , Proteínas tau/líquido cefalorraquidiano
20.
EBioMedicine ; 75: 103793, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34990894

RESUMO

BACKGROUND: Synaptic proteins are increasingly studied as biomarkers for synaptic dysfunction and loss, which are early and central events in Alzheimer's disease (AD) and strongly correlate with the degree of cognitive decline. In this study, we specifically investigated the synaptic binding partners neurexin (NRXN) and neuroligin (Nlgn) proteins, to assess their biomarker's potential. METHODS: we developed a parallel reaction monitoring mass spectrometric method for the simultaneous quantification of NRXNs and Nlgns in cerebrospinal fluid (CSF) of neurodegenerative diseases, focusing on AD. Specifically, NRXN-1α, NRXN-1ß, NRXN-2α, NRXN-3α and Nlgn1, Nlgn2, Nlgn3 and Nlgn4 proteins were targeted. FINDINGS: The proteins were investigated in a clinical cohort including CSF from controls (n=22), mild cognitive impairment (MCI) due to AD (n=44), MCI due to other conditions (n=46), AD (n=77) and a group of non-AD dementia (n=28). No difference in levels of NRXNs and Nlgns was found between AD (both at dementia and MCI stages) or controls or the non-AD dementia group for any of the targeted proteins. NRXN and Nlgn proteins correlated strongly with each other, but only a weak correlation with the AD core biomarkers and the synaptic biomarkers neurogranin and growth-associated protein 43, was found, possibly reflecting different pathogenic processing at the synapse. INTERPRETATION: we conclude that NRXN and Nlgn proteins do not represent suitable biomarkers for synaptic pathology in AD. The panel developed here could aid in future investigations of the potential involvement of NRXNs and Nlgns in synaptic dysfunction in other disorders of the central nervous system. FUNDING: a full list of funding can be found under the acknowledgments section.


Assuntos
Doença de Alzheimer , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais , Disfunção Cognitiva , Moléculas de Adesão de Célula Nervosa , Doenças Neurodegenerativas , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides , Biomarcadores/líquido cefalorraquidiano , Proteínas de Ligação ao Cálcio/líquido cefalorraquidiano , Moléculas de Adesão Celular Neuronais/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Humanos , Espectrometria de Massas , Moléculas de Adesão de Célula Nervosa/líquido cefalorraquidiano , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/diagnóstico , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...