Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 203(20): e0022121, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34309397

RESUMO

Enterococcus faecalis, a multiple antibiotic-resistant Gram-positive bacterium, has emerged as a serious nosocomial pathogen. Here, we used a genetic approach to characterize the strategies used by E. faecalis to fulfill its requirements for endogenous fatty acid (FA) synthesis in vitro and in vivo. The type II fatty acid synthesis (FASII) pathway is encoded by two operons and two monocistronic genes. Expression of all of these genes is repressed by exogenous FAs, which are incorporated into the E. faecalis membrane and modify its composition. Deletion of nine genes of the 12-gene operon abolished growth in an FA-free medium. Addition of serum, which is lipid rich, restored growth. Interestingly, the E. faecalis membrane contains cyclic fatty acids that modify membrane properties but that are unavailable in host serum. The cfa gene that encodes the cyclopropanation process is located in a locus independent of the FASII genes. Its deletion did not alter growth under the conditions tested, but yielded bacteria devoid of cyclic FAs. No differences were observed between mice infected with wild-type (WT) or with FASII or cyclopropanation mutant strains, in terms of bacterial loads in blood, liver, spleen, or kidneys. We conclude that in E. faecalis, neither FASII nor cyclopropanation enzymes are suitable antibiotic targets. IMPORTANCE Membrane lipid homeostasis is crucial for bacterial physiology, adaptation, and virulence. Fatty acids are constituents of the phospholipids that are essential membrane components. Most bacteria incorporate exogenous fatty acids into their membranes. Enterococcus faecalis has emerged as a serious nosocomial pathogen that is responsible for urinary tract infections, bacteremia, and endocarditis and is intrinsically resistant to numerous antibiotics. E. faecalis synthesizes saturated and unsaturated fatty acids, as well as cyclic fatty acids that are not found in the human host. Here, we characterized mutant strains deficient in fatty acid synthesis and modification using genetic, biochemical, and in vivo approaches. We conclude that neither the fatty acid synthesis pathway nor the cyclopropanation enzyme are suitable targets for E. faecalis antibiotic development.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclopropanos/metabolismo , Enterococcus faecalis/metabolismo , Ácidos Graxos/biossíntese , Metiltransferases/metabolismo , Animais , Proteínas de Bactérias/genética , Meios de Cultura , Ciclopropanos/química , DNA Bacteriano/genética , Enterococcus faecalis/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Soro
2.
Nat Commun ; 7: 12944, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703138

RESUMO

The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors.


Assuntos
Farmacorresistência Bacteriana , Ácidos Graxos/metabolismo , Mutação , Staphylococcus aureus/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Alelos , Animais , Antibacterianos/farmacologia , Clonagem Molecular , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Feminino , Teste de Complementação Genética , Lipogênese , Camundongos , Camundongos Endogâmicos BALB C , Polimorfismo Genético , Análise de Sequência de DNA , Triclosan/farmacologia , Virulência/efeitos dos fármacos
3.
J Bacteriol ; 195(13): 3073-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645602

RESUMO

The Enterococcus faecalis leucine-rich protein ElrA promotes virulence by stimulating bacterial persistence in macrophages and production of the interleukin-6 (IL-6) cytokine. The ElrA protein is encoded within an operon that is poorly expressed under laboratory conditions but induced in vivo. In this study, we identify ef2687 (renamed elrR), which encodes a member of the Rgg (regulator gene for glucosyltransferase) family of putative regulatory proteins. Using quantitative reverse transcription-PCR, translational lacZ fusions, and electrophoretic mobility shift assays, we demonstrate that ElrR positively regulates expression of elrA. These results correlate with the attenuated virulence of the ΔelrR strain in a mouse peritonitis model. Virulence of simple and double elrR and elrA deletion mutants also suggests a remaining ElrR-independent expression of elrA in vivo and additional virulence-related genes controlled by ElrR.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica/fisiologia , Óperon/fisiologia , Animais , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica/genética , Camundongos , Óperon/genética , Virulência/genética , Virulência/fisiologia
4.
PLoS Pathog ; 9(2): e1003179, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23436996

RESUMO

Group B Streptococcus (GBS), a common commensal of the female genital tract, is the leading cause of invasive infections in neonates. Expression of major GBS virulence factors, such as the hemolysin operon cyl, is regulated directly at the transcriptional level by the CovSR two-component system. Using a random genetic approach, we identified a multi-spanning transmembrane protein, Abx1, essential for the production of the GBS hemolysin. Despite its similarity to eukaryotic CaaX proteases, the Abx1 function is not involved in a post-translational modification of the GBS hemolysin. Instead, we demonstrate that Abx1 regulates transcription of several virulence genes, including those comprising the hemolysin operon, by a CovSR-dependent mechanism. By combining genetic analyses, transcriptome profiling, and site-directed mutagenesis, we showed that Abx1 is a regulator of the histidine kinase CovS. Overexpression of Abx1 is sufficient to activate virulence gene expression through CovS, overcoming the need for an additional signal. Conversely, the absence of Abx1 has the opposite effect on virulence gene expression consistent with CovS locked in a kinase-competent state. Using a bacterial two-hybrid system, direct interaction between Abx1 and CovS was mapped specifically to CovS domains involved in signal processing. We demonstrate that the CovSR two-component system is the core of a signaling pathway integrating the regulation of CovS by Abx1 in addition to the regulation of CovR by the serine/threonine kinase Stk1. In conclusion, our study reports a regulatory function for Abx1, a member of a large protein family with a characteristic Abi-domain, which forms a signaling complex with the histidine kinase CovS in GBS.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Epistasia Genética , Feminino , Perfilação da Expressão Gênica , Hemólise , Histidina Quinase , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Pigmentos Biológicos/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Virulência/genética , Fatores de Virulência/genética
5.
Appl Environ Microbiol ; 78(15): 5417-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22610425

RESUMO

The random transposon mutagenesis system P(junc)-TpaseIS(1223) is composed of plasmids pVI129, expressing IS1223 transposase, and pVI110, a suicide transposon plasmid carrying the P(junc) sequence, the substrate of the IS1223 transposase. This system is particularly efficient in Lactobacillus casei, as more than 10,000 stable, random mutants were routinely obtained via electroporation.


Assuntos
Elementos de DNA Transponíveis/genética , Lacticaseibacillus casei/genética , Mutagênese/genética , Southern Blotting , Primers do DNA/genética , Eletroporação , Escherichia coli , Plasmídeos/genética , Transposases/genética
6.
Proteomics ; 11(15): 2981-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21630458

RESUMO

We have generated a protein-protein interaction network in Bacillus subtilis focused on several essential cellular processes such as cell division, cell responses to various stresses, the bacterial cytoskeleton, DNA replication and chromosome maintenance by careful application of the yeast two-hybrid approach. This network, composed of 793 interactions linking 287 proteins with an average connectivity of five interactions per protein, represents a valuable resource for future functional analyses. A striking feature of the network is a group of highly connected hubs (GoH) linking many different cellular processes. Most of the proteins of the GoH have unknown functions and are associated to the membrane. By the integration of available knowledge, in particular of transcriptome data sets, the GoH was decomposed into subgroups of party hubs corresponding to protein complexes or regulatory pathways expressed under different conditions. At a global level, the GoH might function as a very robust group of date hubs having partially redundant functions to integrate information from the different cellular pathways. Our analyses also provide a rational way to study the highly redundant functions of the GoH by a genetic approach.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mapeamento de Interação de Proteínas/métodos , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Técnicas do Sistema de Duplo-Híbrido
7.
Nature ; 458(7234): 83-6, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19262672

RESUMO

Antimicrobial drugs targeting the reportedly essential type II fatty acid synthesis (FASII) pathway have been recently acclaimed for their efficacy against infections caused by multiresistant Gram-positive bacteria. Our findings show that the strategy for antibiotic development based on FASII pathway targets is fundamentally flawed by the fact that exogenous fatty acids fully bypass inhibition of this pathway in both in vitro and in vivo conditions. We demonstrate that major Gram-positive pathogens-such as streptococci, pneumococci, enterococci and staphylococci-overcome drug-induced FASII pathway inhibition when supplied with exogenous fatty acids, and human serum proves to be a highly effective source of fatty acids. For opportunist pathogen Streptococcus agalactiae, growth in serum leads to an overall decrease of FASII gene expression. No antibiotic inhibitor could have a stronger effect than the inactivation of the target gene, so we challenged the role of FASII using deletion mutants. Our results unequivocally show that the FASII target enzymes are dispensable in vivo during S. agalactiae infection. The results of this study largely compromise the use of FASII-based antimicrobials for treating sepsis caused by Gram-positive pathogens.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Ácidos Graxos/biossíntese , Bactérias Gram-Positivas/efeitos dos fármacos , Animais , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sepse/tratamento farmacológico , Sepse/microbiologia , Soro/química , Soro/microbiologia , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Especificidade por Substrato , Virulência/genética
8.
Infect Immun ; 75(9): 4463-71, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17620355

RESUMO

Enterococcus faecalis is an important nosocomial pathogen associated with high morbidity and mortality for patients who are immunocompromised or who have severe underlying diseases. The E. faecalis genome encodes numerous surface-exposed proteins that may be involved in virulence. This work describes the characterization of the first internalin-like protein in E. faecalis, ElrA, belonging to the recently identified WxL family of surface proteins. ElrA contains an N-terminal signal peptide for export, a leucine-rich repeat domain that may interact with host cells, and a C-terminal WxL domain that interacts with the peptidoglycan. Disruption of the elrA gene significantly attenuates bacterial virulence in a mouse peritonitis model. The elrA deletion mutant also displays a defect in infection of host macrophages and a decreased interleukin-6 response in vivo. Finally, elrA expression is induced in vivo. Altogether, these results demonstrate a role for ElrA in the E. faecalis infectious process in vivo and suggest that this surface protein may contribute to E. faecalis virulence by stimulating the host inflammatory response.


Assuntos
Proteínas de Bactérias/fisiologia , Enterococcus faecalis/patogenicidade , Infecções por Bactérias Gram-Positivas/imunologia , Leucina/fisiologia , Peritonite/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Enterococcus faecalis/genética , Enterococcus faecalis/imunologia , Feminino , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/patologia , Interleucina-6/biossíntese , Leucina/genética , Camundongos , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Peritonite/microbiologia , Peritonite/patologia , Virulência
9.
J Bacteriol ; 189(4): 1244-53, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16963569

RESUMO

Analysis of the genome sequence of Enterococcus faecalis clinical isolate V583 revealed novel genes encoding surface proteins. Twenty-seven of these proteins, annotated as having unknown functions, possess a putative N-terminal signal peptide and a conserved C-terminal region characterized by a novel conserved domain designated WxL. Proteins having similar characteristics were also detected in other low-G+C-content gram-positive bacteria. We hypothesized that the WxL region might be a determinant of bacterial cell location. This hypothesis was tested by generating protein fusions between the C-terminal regions of two WxL proteins in E. faecalis and a nuclease reporter protein. We demonstrated that the C-terminal regions of both proteins conferred a cell surface localization to the reporter fusions in E. faecalis. This localization was eliminated by introducing specific deletions into the domains. Interestingly, exogenously added protein fusions displayed binding to whole cells of various gram-positive bacteria. We also showed that the peptidoglycan was a binding ligand for WxL domain attachment to the cell surface and that neither proteins nor carbohydrates were necessary for binding. Based on our findings, we propose that the WxL region is a novel cell wall binding domain in E. faecalis and other gram-positive bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Composição de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Lactobacillus/genética , Lactobacillus/metabolismo , Listeria/genética , Listeria/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...